版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆河北省隆化縣存瑞中學(xué)高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個袋子中有4個紅球,2個白球,若從中任取2個球,則這2個球中有白球的概率是A. B. C. D.2.“1<x<2”是“|x|>1”成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.由0,1,2,3組成無重復(fù)數(shù)字的四位數(shù),其中0與2不相鄰的四位數(shù)有A.6個 B.8個 C.10個 D.12個4.如圖,已知函數(shù)的圖象關(guān)于坐標(biāo)原點對稱,則函數(shù)的解析式可能是()A. B.C. D.5.中國南北朝時期的著作《孫子算經(jīng)》中,對同余除法有較深的研究.設(shè)為整數(shù),若和被除得的余數(shù)相同,則稱和對模同余,記為.若,,則的值可以是A.2015 B.2016 C.2017 D.20186.下列函數(shù)一定是指數(shù)函數(shù)的是()A. B. C. D.7.已知直線(為參數(shù))與曲線的相交弦中點坐標(biāo)為,則等于()A. B. C. D.8.“,”的否定是A., B.,C., D.,9.隨機變量的分布列如右表,若,則()012A. B. C. D.10.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則在復(fù)平面上復(fù)數(shù)對應(yīng)的點的坐標(biāo)為()A. B. C. D.11.設(shè)集合,分別從集合A和B中隨機抽取數(shù)x和y,確定平面上的一個點,記“點滿足條件”為事件C,則()A. B. C. D.12.若變量滿足約束條件,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿者服務(wù),則選出的2名同學(xué)中至少有1名女同學(xué)的概率是_____.14.若,,且,則的最小值為__________.15.函數(shù),當(dāng)時,恒成立,求.16.已知函數(shù)f(x)=|lnx|,0<x≤e3-x+e3+3,x>三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某車間名工人年齡數(shù)據(jù)如表所示:(1)求這名工人年齡的眾數(shù)與極差;(2)以十位數(shù)為莖,個位數(shù)為葉,作出這名工人年齡的莖葉圖;(3)求這名工人年齡的方差.年齡(歲)工人數(shù)(人)合計18.(12分)已知數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和為.19.(12分)某工廠為檢驗車間一生產(chǎn)線工作是否正常,現(xiàn)從生產(chǎn)線中隨機抽取一批零件樣本,測量它們的尺寸(單位:)并繪成頻率分布直方圖,如圖所示.根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件尺寸服從正態(tài)分布,其中近似為零件樣本平均數(shù),近似為零件樣本方差.(1)求這批零件樣本的和的值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(2)假設(shè)生產(chǎn)狀態(tài)正常,求;(3)若從生產(chǎn)線中任取一零件,測量其尺寸為,根據(jù)原則判斷該生產(chǎn)線是否正常?附:;若,則,,.20.(12分)已知曲線的極坐標(biāo)方程為(1)若以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,求曲線的直角坐標(biāo)方程;(2)若是曲線上一個動點,求的最大值,以及取得最大值時點的坐標(biāo).21.(12分)2018年至2020年,第六屆全國文明城市創(chuàng)建工作即將開始.在2017年9月7日召開的攀枝花市創(chuàng)文工作推進會上,攀枝花市委明確提出“力保新一輪提名城市資格、確保2020年創(chuàng)建成功”的目標(biāo).為了確保創(chuàng)文工作,今年初市交警大隊在轄區(qū)開展“機動車不禮讓行人整治行動”.下表是我市一主干路口監(jiān)控設(shè)備抓拍的5個月內(nèi)“駕駛員不禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):月份違章駕駛員人數(shù)(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;(Ⅱ)預(yù)測該路口7月份不“禮讓斑馬線”違章駕駛員的人數(shù);(Ⅲ)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查“駕駛員不禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:不禮讓斑馬線禮讓斑馬線合計駕齡不超過年駕齡年以上合計能否據(jù)此判斷有97.5%的把握認為“禮讓斑馬線”行為與駕齡有關(guān)?22.(10分)央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機抽取了某市名觀眾進行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;(2)若從收視時間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時間相差5分鐘以上的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
先計算從中任取2個球的基本事件總數(shù),然后計算這2個球中有白球包含的基本事件個數(shù),由此能求出這2個球中有白球的概率.【題目詳解】解:一個袋子中有4個紅球,2個白球,將4紅球編號為1,2,3,4;2個白球編號為5,1.從中任取2個球,基本事件為:{1,2},{1,3},{1,4},{1,5},{1,1},{2,3},{2,4},{2,5},{2,1},{3,4},{3,5},{3,1},{4,5},{4,1},{5,1},共15個,而且這些基本事件的出現(xiàn)是等可能的.用A表示“兩個球中有白球”這一事件,則A包含的基本事件有:{1,5},{1,1},{2,5},{2,1},{3,5},{3,1},{4,5},{4,1},{5,1}共9個,這2個球中有白球的概率是.故選B.【題目點撥】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、A【解題分析】
解不等式,進而根據(jù)充要條件的定義,可得答案.【題目詳解】由題意,不等式,解得或,故“”是“”成立的充分不必要條件,故選A.【題目點撥】本題主要考查了不等式的求解,以及充分、必要條件的判定,其中解答熟記充分條件、必要條件的判定方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解題分析】分析:首先求由0,1,2,3組成無重復(fù)數(shù)字的四位數(shù):先排千位數(shù),有種排法,再排另外3個數(shù),有種排法,利用乘法原理能求出組成沒有重復(fù)數(shù)字的四位數(shù)的個數(shù);然后求數(shù)字0,2相鄰的情況:,先把0,2捆綁成一個數(shù)字參與排列,再減去0在千位的情況,由此能求出其中數(shù)字0,2相鄰的四位數(shù)的個數(shù).最后,求得0與2不相鄰的四位數(shù)詳解:由數(shù)字0,1,2,3組成沒有重復(fù)數(shù)字的四位數(shù)有:.
其中數(shù)字0,2相鄰的四位數(shù)有:則0與2不相鄰的四位數(shù)有。故選B點睛:本題考查排列數(shù)的求法,考查乘法原理、排列、捆綁法,間接法等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.4、C【解題分析】
根據(jù)函數(shù)圖像的對稱性,單調(diào)性,利用排除法求解.【題目詳解】由圖象知,函數(shù)是奇函數(shù),排除,;當(dāng)時,顯然大于0,與圖象不符,排除D,故選C.【題目點撥】本題主要考查了函數(shù)的圖象及函數(shù)的奇偶性,屬于中檔題.5、C【解題分析】分析:首先求得a的表達式,然后列表猜想的后三位數(shù)字,最后結(jié)合除法的性質(zhì)整理計算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合二項式定理可得:,計算的數(shù)值如下表所示:底數(shù)指數(shù)冪值5155225531255462555312556156255778125583906255919531255109765625據(jù)此可猜想最后三位數(shù)字為,則:除以8的余數(shù)為1,所給選項中,只有2017除以8的余數(shù)為1,則的值可以是2017.本題選擇C選項.點睛:本題主要考查二項式定理的逆用,學(xué)生歸納推理的能力等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.6、D【解題分析】
根據(jù)指數(shù)函數(shù)定義,逐項分析即可.【題目詳解】A:中指數(shù)是,所以不是指數(shù)函數(shù),故錯誤;B:是冪函數(shù),故錯誤;C:中底數(shù)前系數(shù)是,所以不是指數(shù)函數(shù),故錯誤;D:屬于指數(shù)函數(shù),故正確.故選D.【題目點撥】指數(shù)函數(shù)和指數(shù)型函數(shù):形如(且)的是指數(shù)函數(shù),形如(且且且)的是指數(shù)型函數(shù).7、A【解題分析】
根據(jù)參數(shù)方程與普通方程的互化,得直線的普通方程為,由極坐標(biāo)與直角坐標(biāo)的互化,得曲線普通方程為,再利用“平方差”法,即可求解.【題目詳解】由直線(為參數(shù)),可得直線的普通方程為,由曲線,可得曲線普通方程為,設(shè)直線與橢圓的交點為,,則,,兩式相減,可得.所以,即直線的斜率為,所以,故選A.【題目點撥】本題主要考查了參數(shù)方程與普通方程、極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及中點弦問題的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用中點弦的“平方差”法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、D【解題分析】
通過命題的否定的形式進行判斷.【題目詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【題目點撥】本題考查全稱命題的否定,屬基礎(chǔ)題.9、B【解題分析】分析:根據(jù)題目條件中給出的分布列,可以知道和之間的關(guān)系,根據(jù)期望為,又可以得到一組關(guān)系,這樣得到方程組,解方程組得到的值.進而求得.詳解:根據(jù)題意,解得則故選B.點睛:本題考查期望、方差和分布列中各個概率之間的關(guān)系,屬基礎(chǔ)題.10、C【解題分析】
利用復(fù)數(shù)的運算法則、幾何意義即可得出.【題目詳解】z=,故選:C.【題目點撥】本題考查了復(fù)數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.11、A【解題分析】
求出從集合A和B中隨機各取一個數(shù)x,y的基本事件總數(shù),和滿足點P(x,y)滿足條件x2+y2≤16的基本事件個數(shù),代入古典概型概率計算公式,可得答案.【題目詳解】∵集合A=B={1,2,3,4,5,6},分別從集合A和B中隨機各取一個數(shù)x,y,確定平面上的一個點P(x,y),共有6×6=36種不同情況,其中P(x,y)滿足條件x2+y2≤16的有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8個,∴C的概率P(C),故選A.【題目點撥】本題考查的知識點是古典概型概率計算公式,考查了列舉法計算基本事件的個數(shù),其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關(guān)鍵.12、B【解題分析】分析:根據(jù)約束條件畫出平面區(qū)域,再將目標(biāo)函數(shù)轉(zhuǎn)換為,則為直線的截距,通過平推法確定的取值范圍.詳解:(1)畫直線,和,根據(jù)不等式組確定平面區(qū)域,如圖所示.(2)將目標(biāo)函數(shù)轉(zhuǎn)換為直線,則為直線的截距.(3)畫直線,平推直線,確定點A、B分別取得截距的最小值和最大值.易得,聯(lián)立方程組,解得,B坐標(biāo)為(4)分別將點A、B坐標(biāo)代入,,的取值范圍是故選B.點睛:本題主要考查線性規(guī)劃問題,數(shù)形結(jié)合是解決問題的關(guān)鍵.目標(biāo)函數(shù)型線性規(guī)劃問題解題步驟:(1)確定可行區(qū)域(2)將轉(zhuǎn)化為,求z的值,可看做求直線,在y軸上截距的最值。(3)將平移,觀察截距最大(?。┲祵?yīng)的位置,聯(lián)立方程組求點坐標(biāo)。(4)將該點坐標(biāo)代入目標(biāo)函數(shù),計算Z。二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】
先求事件的總數(shù),再求選出的2名同學(xué)中至少有1名女同學(xué)的事件數(shù),最后根據(jù)古典概型的概率計算公式得出答案.【題目詳解】從3名男同學(xué)和2名女同學(xué)中任選2名同學(xué)參加志愿服務(wù),共有種情況.若選出的2名學(xué)生恰有1名女生,有種情況,若選出的2名學(xué)生都是女生,有種情況,所以所求的概率為.【題目點撥】計數(shù)原理是高考考查的重點內(nèi)容,考查的形式有兩種,一是獨立考查,二是與古典概型結(jié)合考查,由于古典概型概率的計算比較明確,所以,計算正確基本事件總數(shù)是解題的重要一環(huán).在處理問題的過程中,應(yīng)注意審清題意,明確“分類”“分步”,根據(jù)順序有無,明確“排列”“組合”.14、【解題分析】分析:由對數(shù)運算和換底公式,求得的關(guān)系為,根據(jù)基本不等式確定詳解:因為,所以,所以,即所以當(dāng)且僅當(dāng),即,此時時取等號所以最小值為點睛:本題考查了對數(shù)的運算和對數(shù)換底公式的綜合應(yīng)用,根據(jù)“1”的代換聯(lián)系基本不等式求最值,綜合性強,屬于中檔題.15、【解題分析】試題分析:由題意得,,因此,從而,考點:二次函數(shù)性質(zhì)16、1【解題分析】試題分析:由題意得,0<lnx2<3?1<x2<e3,因為存在x1<x2<x3,f(x1)=f(考點:分段函數(shù)的性質(zhì)及利用導(dǎo)數(shù)求解函數(shù)的最值.【方法點晴】本題主要考查了分段函數(shù)的圖象與性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值、最值,著重考查了學(xué)生分析、解答問題的能力,同時考查了轉(zhuǎn)化與化歸的思想方法的應(yīng)用,屬于中檔試題,本題的解答中,先確定1<x2<三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)眾數(shù)為30,極差為21;(2)見解析;(3)方差,12.6【解題分析】
(1)根據(jù)眾數(shù)和極差的定義,可以求出眾數(shù)、極差;(2)按照制作莖葉圖的方法制作即可;(3)先求出30個數(shù)據(jù)的平均數(shù),然后按照方差計算公式求出方差.【題目詳解】(1)這20名工人年齡的眾數(shù)為30,極差為;(2)莖葉圖如下:(3)年齡的平均數(shù)為,故這20名工人年齡的方差為.【題目點撥】本題考查了眾數(shù)、極差的定義,考查了繪制莖葉圖,考查了方差的計算公式.18、(1)(2)【解題分析】試題分析:(1)利用和項與通項關(guān)系,當(dāng)時,,將條件轉(zhuǎn)化為項之間遞推關(guān)系:,再構(gòu)造等比數(shù)列:,根據(jù)等比數(shù)列定義及通項公式求得,即得;注意驗證當(dāng)時是否滿足題意,(2)由于可裂成相鄰兩項之差:,所以利用裂項相消法求數(shù)列的前項和.試題解析:(Ⅰ)因為,故當(dāng)時,;當(dāng)時,,兩式對減可得;經(jīng)檢驗,當(dāng)時也滿足;故,故數(shù)列是以3為首項,3為公比的等比數(shù)列,故,即.(Ⅱ)由(Ⅰ)可知,,故.點睛:裂項相消法是指將數(shù)列的通項分成兩個式子的代數(shù)和的形式,然后通過累加抵消中間若干項的方法,裂項相消法適用于形如(其中是各項均不為零的等差數(shù)列,c為常數(shù))的數(shù)列.裂項相消法求和,常見的有相鄰兩項的裂項求和(如本例),還有一類隔一項的裂項求和,如或.19、(1)75,110;(2)0.8185;(3)該生產(chǎn)線工作不正常.【解題分析】分析:(1)取每組區(qū)間的中點,對應(yīng)的頻率為,根據(jù)公式,,計算樣本的和的值.(2)由正態(tài)分布曲線的性質(zhì),分別計算和,就可求出的值.(3)由題可知,零件尺寸服從正態(tài)分布時認為這條生產(chǎn)線工作正常,根據(jù)原,,,生產(chǎn)線工作不正常.詳解:解:(1).;(2)由(1)知,.從而,,∴.(3)∵,,∴.∵,小概率事件發(fā)生了,∴該生產(chǎn)線工作不正常.點睛:本題考查頻率分布直方圖的應(yīng)用,均值和方差的求法,考查正態(tài)分布和概率的計算,考查運算求解能力、數(shù)據(jù)處理能力、分類與整合思想.20、(1).(2)最大值為6,.【解題分析】
(1)利用極坐標(biāo)化直角坐標(biāo)的公式求解即可;(2)設(shè)利用三角函數(shù)圖象和性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024自然人之間借款合同范本
- 2025年度城市綜合體場地合作經(jīng)營合同
- 2025年度文化產(chǎn)業(yè)園物業(yè)管理與文化活動策劃服務(wù)協(xié)議3篇
- 2024版教育機構(gòu)裝潢工程合同樣本
- 二零二四年度9A文智能家居系統(tǒng)定制開發(fā)合同
- 2024版環(huán)評工程服務(wù)合同范本大全
- 2025年度生態(tài)農(nóng)業(yè)用地承包種植合作合同規(guī)范文本3篇
- 二零二四年度BIM可視化展示與演示合同
- 二零二五年度廁所改造工程環(huán)保標(biāo)準(zhǔn)制定合同2篇
- 二零二五年度金融借款合同電子化轉(zhuǎn)型的法律挑戰(zhàn)3篇
- 離職分析報告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理條例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學(xué)寒假作業(yè)1
- 保險產(chǎn)品創(chuàng)新與市場定位培訓(xùn)課件
- (完整文本版)體檢報告單模版
- 1例左舌鱗癌手術(shù)患者的圍手術(shù)期護理體會
- (完整)100道兩位數(shù)加減兩位數(shù)口算題(難)
- 鋼結(jié)構(gòu)牛腿計算
評論
0/150
提交評論