2023-2024學(xué)年吉林省長(zhǎng)春九臺(tái)師范高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年吉林省長(zhǎng)春九臺(tái)師范高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年吉林省長(zhǎng)春九臺(tái)師范高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年吉林省長(zhǎng)春九臺(tái)師范高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年吉林省長(zhǎng)春九臺(tái)師范高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年吉林省長(zhǎng)春九臺(tái)師范高中高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.2.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.3.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.4.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.5.設(shè)為等差數(shù)列的前項(xiàng)和,若,則A. B.C. D.6.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.297.已知函數(shù)滿足,設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.等比數(shù)列若則()A.±6 B.6 C.-6 D.9.的內(nèi)角的對(duì)邊分別為,已知,則角的大小為()A. B. C. D.10.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.11.點(diǎn)為棱長(zhǎng)是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長(zhǎng)度為()A. B. C. D.12.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,,為的中點(diǎn),為以為直徑的圓上一動(dòng)點(diǎn),則的最小值是_____.14.拋物線上到其焦點(diǎn)的距離為的點(diǎn)的個(gè)數(shù)為________.15.若,則=______,=______.16.的展開式中的系數(shù)為__________(用具體數(shù)據(jù)作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.18.(12分)設(shè)點(diǎn)分別是橢圓的左,右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點(diǎn),過點(diǎn)且斜率的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn),直線交直線于點(diǎn),證明:直線.19.(12分)在①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中的橫線上,并解答相應(yīng)的問題.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足________________,,求的面積.20.(12分)如圖,三棱臺(tái)的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.21.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長(zhǎng).22.(10分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點(diǎn)Q為AE的中點(diǎn).(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱.

∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故選C2、D【解析】

由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.3、B【解析】

根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.4、C【解析】

先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.5、C【解析】

根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.6、D【解析】

由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.7、B【解析】

結(jié)合函數(shù)的對(duì)應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對(duì)應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題.8、B【解析】

根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號(hào)相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡(jiǎn)單應(yīng)用,注意項(xiàng)的符號(hào)特征,屬于基礎(chǔ)題.9、A【解析】

先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡(jiǎn),可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)?,則,而,所以.故選:A【點(diǎn)睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.10、C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.11、C【解析】

設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長(zhǎng)度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長(zhǎng)為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長(zhǎng)度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.12、B【解析】

畫出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B【點(diǎn)睛】本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立合適的直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達(dá)式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點(diǎn),,,設(shè)點(diǎn),所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因?yàn)?所以的最小值為.故答案為:【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運(yùn)算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.14、【解析】

設(shè)拋物線上任意一點(diǎn)的坐標(biāo)為,根據(jù)拋物線的定義求得,并求出對(duì)應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線上任意一點(diǎn)的坐標(biāo)為,拋物線的準(zhǔn)線方程為,由拋物線的定義得,解得,此時(shí).因此,拋物線上到其焦點(diǎn)的距離為的點(diǎn)的個(gè)數(shù)為.故答案為:.【點(diǎn)睛】本題考查利用拋物線的定義求點(diǎn)的坐標(biāo),考查計(jì)算能力,屬于基礎(chǔ)題.15、10【解析】

①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.16、【解析】

利用二項(xiàng)展開式的通項(xiàng)公式可求的系數(shù).【詳解】的展開式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來計(jì)算,本題屬于容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線的參數(shù)方程化為普通方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求實(shí)數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點(diǎn)睛】本題重點(diǎn)考查方程的互化,考查直線與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.18、(1)(2)見解析【解析】

(1)設(shè),求出后由二次函數(shù)知識(shí)得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達(dá)定理得,設(shè),利用三點(diǎn)共線,求得,然后驗(yàn)證即可.【詳解】解:(1)設(shè),則,所以,因?yàn)椋援?dāng)時(shí),值最小,所以,解得,(舍負(fù))所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因?yàn)槿c(diǎn)共線,又所以,解得.而所以直線軸,即.【點(diǎn)睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達(dá)定理,得出,再代入題中需要計(jì)算可證明的式子參與化簡(jiǎn)變形.19、橫線處任填一個(gè)都可以,面積為.【解析】

無論選哪一個(gè),都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因?yàn)?,所?從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點(diǎn)睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進(jìn)行邊角轉(zhuǎn)換,求三角形面積時(shí),①若三角形中已知一個(gè)角(角的大小或該角的正、余弦值),結(jié)合題意求解這個(gè)角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個(gè)角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當(dāng)選擇面積公式是解題的關(guān)鍵.20、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)取的中點(diǎn)為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點(diǎn),可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量為,設(shè)與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點(diǎn)為,連結(jié).由是三棱臺(tái)得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點(diǎn),∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結(jié).由是正三角形,且為中點(diǎn),則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,,,,∴,,.設(shè)平面的一個(gè)法向量為.由可得,.令,則,,∴.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學(xué)生的邏輯推理能力與計(jì)算求解能力,屬于中檔題.21、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)取的中點(diǎn),連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論