版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽省蚌埠市三縣聯(lián)誼校高考考前模擬數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B.C. D.2.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.53.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.4.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③6.已知,函數在區(qū)間上恰有個極值點,則正實數的取值范圍為()A. B. C. D.7.設,,,則的大小關系是()A. B. C. D.8.若函數的圖象如圖所示,則的解析式可能是()A. B. C. D.9.函數f(x)=的圖象大致為()A. B.C. D.10.已知函數f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數根,則實數k的取值范圍是()A. B.C. D.11.若集合,,則A. B. C. D.12.記為數列的前項和數列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結論:①甲校學生成績的優(yōu)秀率大于乙校學生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系不確定.其中,所有正確結論的序號是____________.14.戊戌年結束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個組各2人,另兩個組各1人,分別奔赴四所不同的學校參加演講,則不同的分配方案有_________種(用數字作答),15.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側,現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.16.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,分別為內角,,的對邊,且.(1)證明:;(2)若的面積,,求角.18.(12分)在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數方程為(為參數),直線l與曲線C交于M、N兩點。(1)寫出直線l的普通方程和曲線C的直角坐標方程:(2)若成等比數列,求a的值。19.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數方程;(Ⅱ)求曲線的內接矩形的周長的最大值.20.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區(qū)間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設點,直線與曲線相交于,,求的值.22.(10分)某公司生產的某種產品,如果年返修率不超過千分之一,則其生產部門當年考核優(yōu)秀,現(xiàn)獲得該公司年的相關數據如下表所示:年份20112012201320142015201620172018年生產臺數(萬臺)2345671011該產品的年利潤(百萬元)2.12.753.53.2534.966.5年返修臺數(臺)2122286580658488部分計算結果:,,,,注:年返修率=(1)從該公司年的相關數據中任意選取3年的數據,以表示3年中生產部門獲得考核優(yōu)秀的次數,求的分布列和數學期望;(2)根據散點圖發(fā)現(xiàn)2015年數據偏差較大,如果去掉該年的數據,試用剩下的數據求出年利潤(百萬元)關于年生產臺數(萬臺)的線性回歸方程(精確到0.01).附:線性回歸方程中,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.2、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.3、A【解析】
根據是中點這一條件,將棱錐的高轉化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.4、B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規(guī)則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規(guī)則幾何體的體積可用割補法來求其體積,本題屬于基礎題.5、B【解析】
根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.6、B【解析】
先利用向量數量積和三角恒等變換求出,函數在區(qū)間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數在區(qū)間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數量積運算和三角恒等變換與三角函數性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數關系式化成或的形式;(2)根據自變量的范圍確定的范圍,根據相應的正弦曲線或余弦曲線求值域或最值或參數范圍.7、A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、??碱}型.8、A【解析】
由函數性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數的圖象判斷解析式問題,通過函數性質及特殊值利用排除法是解決本題的關鍵,難度一般.9、D【解析】
根據函數為非偶函數可排除兩個選項,再根據特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數圖象的對稱性及特值法區(qū)分函數圖象,屬于中檔題.10、D【解析】
由已知可將問題轉化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數與方程思想及轉化能力,還考查了導數的幾何意義及計算能力、觀察能力,屬于難題.11、C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.12、A【解析】
先令,找出的關系,再令,得到的關系,從而可求出,然后令,可得,得出數列為等差數列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數列的遞推式求數列的通項,采用了賦值法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】
根據局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優(yōu)秀率與甲、乙兩校所有學生成績的優(yōu)秀率的大小關系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.14、1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,然后用分步計數原理求解.【詳解】將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,則不同的分配方案有種.故答案為:1080【點睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.15、【解析】
分兩種情況討論:(1)斜邊在BC上,設,則,(2)若在若一條直角邊在上,設,則,進一步利用導數的應用和三角函數關系式恒等變形和函數單調性即可求出最大值.【詳解】(1)斜邊在上,設,則,則,,從而.當時,此時,符合.(2)若一條直角邊在上,設,則,則,,由知.,當時,,單調遞增,當時,,單調遞減,.當,即時,最大.故答案為:.【點睛】此題考查實際問題中導數,三角函數和函數單調性的綜合應用,注意分類討論把所有情況考慮完全,屬于一般性題目.16、【解析】
設是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉化的數學思想方法,考查運算求解能力,屬于中檔題.18、(1)l的普通方程;C的直角坐標方程;(2).【解析】
(1)利用極坐標與直角坐標的互化公式即可把曲線的極坐標方程化為直角坐標方程,利用消去參數即可得到直線的直角坐標方程;(2)將直線的參數方程,代入曲線的方程,利用參數的幾何意義即可得出,從而建立關于的方程,求解即可.【詳解】(1)由直線l的參數方程消去參數t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標方程.(2)將代入拋物線得由已知成等比數列,即,,,整理得(舍去)或.【點睛】熟練掌握極坐標與直角坐標的互化公式、方程思想、直線的參數方程中的參數的幾何意義是解題的關鍵.19、(Ⅰ)曲線的參數方程為:(為參數);的極坐標方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉換關系,把參數方程、極坐標方程和直角坐標方程之間進行轉換;(
II
)利用三角函數關系式的恒等變換和正弦型函數的性質的應用,即可求出結果.【詳解】(Ⅰ)由題意:曲線的直角坐標方程為:,所以曲線的參數方程為(為參數),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為.(Ⅱ)設橢圓的內接矩形的頂點為,,,,所以橢圓的內接矩形的周長為:,所以當時,即時,橢圓的內接矩形的周長取得最大值16.【點睛】本題考查了曲線的參數方程,極坐標方程與普通方程間的互化,三角函數關系式的恒等變換,正弦型函數的性質的應用,極徑的應用,考查學生的求解運算能力和轉化能力,屬于基礎題型.20、(Ⅰ)函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)利用導數可得在區(qū)間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區(qū)間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區(qū)間為,單調減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院護工保密協(xié)議書范本(3篇)
- 舞蹈新生班主題課程設計
- 藝術與設計課程設計案例
- 自然探索團隊課程設計
- 簡易課程設計
- 英語詞匯班課程設計
- 正太分布課程設計
- 綠色蟈蟈課程設計
- 財務制度匯編
- 《刑罰的體系與種類》課件
- 小學思政課《愛國主義教育》
- 中藥材的性狀及真?zhèn)舞b別培訓-課件
- 泵站項目劃分
- 綠化養(yǎng)護工作檢查及整改記錄表
- 新能源發(fā)電技術學習通課后章節(jié)答案期末考試題庫2023年
- GB/T 42752-2023區(qū)塊鏈和分布式記賬技術參考架構
- Module 9 (教案)外研版(一起)英語四年級上冊
- 初中物理-初三物理模擬試卷講評課教學課件設計
- DG-TJ 08-2367-2021 既有建筑外立面整治設計標準
- 公文流轉單(標準模版)
- XXX大中型公司報價管理辦法
評論
0/150
提交評論