安徽高中教科研聯盟2024年高考數學倒計時模擬卷含解析_第1頁
安徽高中教科研聯盟2024年高考數學倒計時模擬卷含解析_第2頁
安徽高中教科研聯盟2024年高考數學倒計時模擬卷含解析_第3頁
安徽高中教科研聯盟2024年高考數學倒計時模擬卷含解析_第4頁
安徽高中教科研聯盟2024年高考數學倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽高中教科研聯盟2024年高考數學倒計時模擬卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,2.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.3.已知復數,,則()A. B. C. D.4.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.5.已知函數,其中,,其圖象關于直線對稱,對滿足的,,有,將函數的圖象向左平移個單位長度得到函數的圖象,則函數的單調遞減區(qū)間是()A. B.C. D.6.設,則,則()A. B. C. D.7.已知,,,若,則正數可以為()A.4 B.23 C.8 D.178.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.9.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.1010.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.11.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數12.若為純虛數,則z=()A. B.6i C. D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,若,則__________.14.某種賭博每局的規(guī)則是:賭客先在標記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.15.已知等差數列的前n項和為,,,則=_______.16.已知“在中,”,類比以上正弦定理,“在三棱錐中,側棱與平面所成的角為、與平面所成的角為,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列中,(實數為常數),是其前項和,且數列是等比數列,恰為與的等比中項.(1)證明:數列是等差數列;(2)求數列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.18.(12分)已知函數.(1)當時,求的單調區(qū)間.(2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.19.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.20.(12分)已知函數.(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.21.(12分)某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應開鑿的直線穿山隧道,為進一步改善山區(qū)的交通現狀,計劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標系,如圖所示,山區(qū)邊界曲線為,設公路與曲線相切于點,的橫坐標為.(1)當為何值時,公路的長度最短?求出最短長度;(2)當公路的長度最短時,設公路交軸,軸分別為,兩點,并測得四邊形中,,,千米,千米,求應開鑿的隧道的長度.22.(10分)[選修4-5:不等式選講]設函數.(1)求不等式的解集;(2)已知關于的不等式在上有解,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.2、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數運算,屬于基礎題.3、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數問題是高考數學中的??紗栴},屬于得分題,主要考查的方面有:復數的分類、復數的幾何意義、復數的模、共軛復數以及復數的乘除運算,在運算時注意符號的正、負問題.4、C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.5、B【解析】

根據已知得到函數兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據圖像變換的知識求得的解析式,再利用三角函數求單調區(qū)間的方法,求得的單調遞減區(qū)間.【詳解】解:已知函數,其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據其圖像關于直線對稱,可得,.∴,∴.將函數的圖像向左平移個單位長度得到函數的圖像.令,求得,則函數的單調遞減區(qū)間是,,故選B.【點睛】本小題主要考查三角函數圖像與性質求函數解析式,考查三角函數圖像變換,考查三角函數單調區(qū)間的求法,屬于中檔題.6、A【解析】

根據換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數的運算,屬于中檔題.7、C【解析】

首先根據對數函數的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數可以為8.故選:C【點睛】本題考查對數函數的性質的應用,屬于基礎題.8、D【解析】

試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.9、C【解析】

取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.10、A【解析】

設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題11、D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.12、C【解析】

根據復數的乘法運算以及純虛數的概念,可得結果.【詳解】∵為純虛數,∴且得,此時故選:C.【點睛】本題考查復數的概念與運算,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

分別代入集合中的元素,求出值,再結合集合中元素的互異性進行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗集合中的元素是否滿足互異性.14、20.2【解析】

分別求出隨機變量ξ1和ξ2的分布列,根據期望和方差公式計算得解.【詳解】設a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關鍵在于準確求出隨機變量取值的概率,根據公式準確計算期望和方差.15、【解析】

利用求出公差,結合等差數列的通項公式可求.【詳解】設公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數列通項公式的求解,利用等差數列的基本量是求解這類問題的通性通法,側重考查數學運算的核心素養(yǎng).16、【解析】

類比,三角形邊長類比三棱錐各面的面積,三角形內角類比三棱錐中側棱與面所成角.【詳解】,故,【點睛】本題考查類比推理.類比正弦定理可得,類比時有結構類比,方法類比等.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)(3)見解析【解析】

(1)令可得,即.得到,再利用通項公式和前n項和的關系求解,(2)由(1)知,.設等比數列的公比為,所以,再根據恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數列是等差數列,(2)由(1)知,.設等比數列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當時,.當時,,∴對任意,都有,【點睛】本題主要考查數列的通項公式和前n項和的關系,等差數列,等比數列的定義和性質以及數列放縮的方法,還考查了轉化化歸的思想和運算求解的能力,屬于難題,18、(1)單調遞增區(qū)間為,;單調遞減區(qū)間為;(2),;(3)證明見解析.【解析】

(1)由的正負可確定的單調區(qū)間;(2)利用基本不等式可求得時,取得最小值,由導數的幾何意義可知,從而求得,求得切點坐標后,可得到切線方程;(3)由極值點的定義可知是的兩個不等正根,由判別式大于零得到的取值范圍,同時得到韋達定理的形式;化簡為,結合的范圍可證得結論.【詳解】(1)由題意得:的定義域為,當時,,,當和時,;當時,,的單調遞增區(qū)間為,;單調遞減區(qū)間為.(2),所以(當且僅當,即時取等號),切線的斜率存在最小值,,解得:,,即切點為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個不等正根.則,解得:,且,.,,,即不等式成立.【點睛】本題考查導數在研究函數中的應用,涉及到利用導數求解函數的單調區(qū)間、導數幾何意義的應用、利用導數證明不等式等知識;本題中證明不等式的關鍵是能夠通過極值點的定義將問題轉變?yōu)橐辉畏匠谈姆植紗栴}.19、(1)(2)【解析】

(1)由數列是等差數列,所以,解得,又由,解得,即可求得數列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數列的前n項和.【詳解】(1)由題意,數列是等差數列,所以,又,,由,得,所以,解得,所以數列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數列的項數,能較好的考查考生的數形結合思想、邏輯思維能力及基本計算能力等.20、(1);(2)【解析】

(1),對函數求導,分別求出和,即可求出在點處的切線方程;(2)對求導,分、和三種情況討論的單調性,再結合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調遞增,從而成立,故符合題意;②當時,令,解得,即在上單調遞減,則,故不符合題意;③當時,在上恒成立,即在上單調遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導數研究函數的單調性,考查了不等式恒成立問題,利用分類討論是解決

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論