甘肅省慶陽市2024年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁
甘肅省慶陽市2024年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁
甘肅省慶陽市2024年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁
甘肅省慶陽市2024年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁
甘肅省慶陽市2024年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

甘肅省慶陽市2024年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)有且只有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.3.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i4.過拋物線的焦點(diǎn)且與的對稱軸垂直的直線與交于,兩點(diǎn),,為的準(zhǔn)線上的一點(diǎn),則的面積為()A.1 B.2 C.4 D.85.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.6.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.7.黨的十九大報(bào)告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長點(diǎn)、形成新動能.共享經(jīng)濟(jì)是公眾將閑置資源通過社會化平臺與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對企業(yè)經(jīng)濟(jì)活躍度的影響,在四個(gè)不同的企業(yè)各取兩個(gè)部門進(jìn)行共享經(jīng)濟(jì)對比試驗(yàn),根據(jù)四個(gè)企業(yè)得到的試驗(yàn)數(shù)據(jù)畫出如下四個(gè)等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.8.我國古代數(shù)學(xué)名著《九章算術(shù)》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺9.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個(gè)院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生10.在中,角所對的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.11.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.12.記為數(shù)列的前項(xiàng)和數(shù)列對任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對的邊分別為,,的平分線交于點(diǎn)D,且,則的最小值為________.14.設(shè)為橢圓在第一象限上的點(diǎn),則的最小值為________.15.過點(diǎn),且圓心在直線上的圓的半徑為__________.16.在的展開式中,項(xiàng)的系數(shù)是__________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的右焦點(diǎn)為,過的直線與交于兩點(diǎn),點(diǎn)的坐標(biāo)為.(1)當(dāng)直線的傾斜角為時(shí),求線段AB的中點(diǎn)的橫坐標(biāo);(2)設(shè)點(diǎn)A關(guān)于軸的對稱點(diǎn)為C,求證:M,B,C三點(diǎn)共線;(3)設(shè)過點(diǎn)M的直線交橢圓于兩點(diǎn),若橢圓上存在點(diǎn)P,使得(其中O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.18.(12分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動點(diǎn),周長的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.19.(12分)某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗(yàn)1000人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)1000次.方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽性,則需對這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn)次.假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.(1)設(shè)方案②中,某組個(gè)人的每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))20.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個(gè)數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過.21.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.22.(10分)我國在貴州省平塘縣境內(nèi)修建的500米口徑球面射電望遠(yuǎn)鏡(FAST)是目前世界上最大單口徑射電望遠(yuǎn)鏡.使用三年來,已發(fā)現(xiàn)132顆優(yōu)質(zhì)的脈沖星候選體,其中有93顆已被確認(rèn)為新發(fā)現(xiàn)的脈沖星,脈沖星是上世紀(jì)60年代天文學(xué)的四大發(fā)現(xiàn)之一,脈沖星就是正在快速自轉(zhuǎn)的中子星,每一顆脈沖星每兩脈沖間隔時(shí)間(脈沖星的自轉(zhuǎn)周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機(jī)構(gòu)觀測并統(tǒng)計(jì)了93顆已被確認(rèn)為新發(fā)現(xiàn)的脈沖星的自轉(zhuǎn)周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現(xiàn)的脈沖星中,自轉(zhuǎn)周期在2至10秒的大約有多少顆?(2)根據(jù)頻率分布直方圖,求新發(fā)現(xiàn)脈沖星自轉(zhuǎn)周期的平均值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由是偶函數(shù),則只需在上有且只有兩個(gè)零點(diǎn)即可.【詳解】解:顯然是偶函數(shù)所以只需時(shí),有且只有2個(gè)零點(diǎn)即可令,則令,遞減,且遞增,且時(shí),有且只有2個(gè)零點(diǎn),只需故選:B【點(diǎn)睛】考查函數(shù)性質(zhì)的應(yīng)用以及根據(jù)零點(diǎn)個(gè)數(shù)確定參數(shù)的取值范圍,基礎(chǔ)題.2、B【解析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對這些知識的理解掌握水平.3、B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.4、C【解析】

設(shè)拋物線的解析式,得焦點(diǎn)為,對稱軸為軸,準(zhǔn)線為,這樣可設(shè)點(diǎn)坐標(biāo)為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設(shè)拋物線的解析式,則焦點(diǎn)為,對稱軸為軸,準(zhǔn)線為,∵直線經(jīng)過拋物線的焦點(diǎn),,是與的交點(diǎn),又軸,∴可設(shè)點(diǎn)坐標(biāo)為,代入,解得,又∵點(diǎn)在準(zhǔn)線上,設(shè)過點(diǎn)的的垂線與交于點(diǎn),,∴.故應(yīng)選C.【點(diǎn)睛】本題考查拋物線的性質(zhì),解題時(shí)只要設(shè)出拋物線的標(biāo)準(zhǔn)方程,就能得出點(diǎn)坐標(biāo),從而求得參數(shù)的值.本題難度一般.5、B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.6、B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.7、D【解析】根據(jù)四個(gè)列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對該部門的發(fā)展有顯著效果,故選D.8、A【解析】

根據(jù)三視圖得出原幾何體的立體圖是一個(gè)三棱錐,將三棱錐補(bǔ)充成一個(gè)長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計(jì)算可得選項(xiàng).【詳解】由三視圖可得,該幾何體是一個(gè)如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點(diǎn),設(shè)球半徑為,則,所以外接球的表面積,故選:A.【點(diǎn)睛】本題考查求幾何體的外接球的表面積,關(guān)鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.9、C【解析】

根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.10、C【解析】

因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.11、A【解析】

設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.12、A【解析】

先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】分析:先根據(jù)三角形面積公式得條件、再利用基本不等式求最值.詳解:由題意可知,,由角平分線性質(zhì)和三角形面積公式得,化簡得,因此當(dāng)且僅當(dāng)時(shí)取等號,則的最小值為.點(diǎn)睛:在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯(cuò)誤.14、【解析】

利用橢圓的參數(shù)方程,將所求代數(shù)式的最值問題轉(zhuǎn)化為求三角函數(shù)最值問題,利用兩角和的正弦公式和三角函數(shù)的性質(zhì),以及求導(dǎo)數(shù)、單調(diào)性和極值,即可得到所求最小值.【詳解】解:設(shè)點(diǎn),,其中,,由,,,可設(shè),導(dǎo)數(shù)為,由,可得,可得或,由,,可得,即,可得,由可得函數(shù)遞減;由,可得函數(shù)遞增,可得時(shí),函數(shù)取得最小值,且為,則的最小值為1.故答案為:1.【點(diǎn)睛】本題考查橢圓參數(shù)方程的應(yīng)用,利用三角函數(shù)的恒等變換和導(dǎo)數(shù)法求函數(shù)最值的方法,考查化簡變形能力和運(yùn)算能力,屬于難題.15、【解析】

根據(jù)弦的垂直平分線經(jīng)過圓心,結(jié)合圓心所在直線方程,即可求得圓心坐標(biāo).由兩點(diǎn)間距離公式,即可得半徑.【詳解】因?yàn)閳A經(jīng)過點(diǎn)則直線的斜率為所以與直線垂直的方程斜率為點(diǎn)的中點(diǎn)坐標(biāo)為所以由點(diǎn)斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設(shè)圓心所以圓心滿足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點(diǎn)睛】本題考查了直線垂直時(shí)的斜率關(guān)系,直線與直線交點(diǎn)的求法,直線與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.16、【解析】的展開式的通項(xiàng)為:.令,得.答案為:-40.點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第r+1項(xiàng),再由特定項(xiàng)的特點(diǎn)求出r值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第r+1項(xiàng),由特定項(xiàng)得出r值,最后求出其參數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)AB的中點(diǎn)的橫坐標(biāo)為;(2)證明見解析;(3)【解析】

設(shè).(1)因?yàn)橹本€的傾斜角為,,所以直線AB的方程為,聯(lián)立方程組,消去并整理,得,則,故線段AB的中點(diǎn)的橫坐標(biāo)為.(2)根據(jù)題意得點(diǎn),若直線AB的斜率為0,則直線AB的方程為,A、C兩點(diǎn)重合,顯然M,B,C三點(diǎn)共線;若直線AB的斜率不為0,設(shè)直線AB的方程為,聯(lián)立方程組,消去并整理得,則,設(shè)直線BM、CM的斜率分別為、,則,即=,即M,B,C三點(diǎn)共線.(3)根據(jù)題意,得直線GH的斜率存在,設(shè)該直線的方程為,設(shè),聯(lián)立方程組,消去并整理,得,由,整理得,又,所以,結(jié)合,得,當(dāng)時(shí),該直線為軸,即,此時(shí)橢圓上任意一點(diǎn)P都滿足,此時(shí)符合題意;當(dāng)時(shí),由,得,代入橢圓C的方程,得,整理,得,再結(jié)合,得到,即,綜上,得到實(shí)數(shù)的取值范圍是.18、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)由橢圓的定義可得,周長取最大值時(shí),線段過點(diǎn),可求出,從而求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達(dá)定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點(diǎn)即得結(jié)論.【詳解】(Ⅰ)設(shè)的周長為,則,當(dāng)且僅當(dāng)線段過點(diǎn)時(shí)“”成立.,,又,,橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點(diǎn)矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時(shí).直線,聯(lián)立直線與直線的方程得,即點(diǎn)在定直線.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的邏輯推理能力和運(yùn)算能力,屬于難題.19、(1)分布列見解析;(2)406.【解析】

(1)計(jì)算個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為,得到分布列.(2)計(jì)算,代入數(shù)據(jù)計(jì)算比較大小得到答案.【詳解】(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.依題意可知,,所以的分布列為:(2)方案②中.結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為:時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為690次,時(shí),,此時(shí)1000人需要化驗(yàn)的總次數(shù)為604次,時(shí),,此時(shí)1000人需要化驗(yàn)的次數(shù)總為594次,即時(shí)化驗(yàn)次數(shù)最多,時(shí)次數(shù)居中,時(shí)化驗(yàn)次數(shù)最少,而采用方案①則需化驗(yàn)1000次,故在這三種分組情況下,相比方案①,當(dāng)時(shí)化驗(yàn)次數(shù)最多可以平均減少次.【點(diǎn)睛】本題考查了分布列,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(1);(2);(3)見解析.【解析】

(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;含有且不含的子集共個(gè),經(jīng)過變換后第一行均變?yōu)?、;同時(shí)含有和的子集共個(gè),經(jīng)過變換后第一行仍為、;不含也不含的子集共個(gè),經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個(gè),經(jīng)過變換后第

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論