版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省東莞市清溪晨光英才培訓(xùn)中心2024屆高考仿真卷數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在中,,且,則()A.1 B. C. D.2.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.33.已知函數(shù)(其中,,)的圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng),且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,則對(duì)于下列判斷:①直線是函數(shù)圖象的一條對(duì)稱(chēng)軸;②點(diǎn)是函數(shù)的一個(gè)對(duì)稱(chēng)中心;③函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③4.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.5.如圖,正方體的棱長(zhǎng)為1,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值6.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.7.若,則的值為()A. B. C. D.8.的展開(kāi)式中的系數(shù)為()A.5 B.10 C.20 D.309.若向量,,則與共線的向量可以是()A. B. C. D.10.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.11.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.如下的程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.15二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,則的最小值是__.14.己知函數(shù),若關(guān)于的不等式對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍是______.15.函數(shù)的定義域?yàn)開(kāi)_____.16.若,,則___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在開(kāi)展學(xué)習(xí)強(qiáng)國(guó)的活動(dòng)中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個(gè)學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計(jì)劃從兩個(gè)學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.18.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點(diǎn),且.(1)求證:平面ACE;(2)當(dāng)PA的長(zhǎng)為何值時(shí),AC與平面PCD所成的角為?19.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.20.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過(guò)坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.21.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.22.(10分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點(diǎn)共線,又得到一個(gè)關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點(diǎn)睛】此題考查的是平面向量基本定理的有關(guān)知識(shí),結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.2、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.3、C【解析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對(duì)稱(chēng)中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否.詳解:因?yàn)闉閷?duì)稱(chēng)中心,且最低點(diǎn)為,所以A=3,且由所以,將帶入得,所以由此可得①錯(cuò)誤,②正確,③當(dāng)時(shí),,所以與有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為,則,所以③正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過(guò)求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.4、D【解析】
先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.5、B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯(cuò)誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.6、C【解析】
由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進(jìn)而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域?yàn)?,?duì)恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,.故選:C.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及指對(duì)同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.7、C【解析】
根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開(kāi)式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開(kāi)式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力8、C【解析】
由知,展開(kāi)式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_(kāi)式的通項(xiàng)為,所以展開(kāi)式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開(kāi)式中的特定項(xiàng),解決這類(lèi)問(wèn)題要注意通項(xiàng)公式應(yīng)寫(xiě)準(zhǔn)確,本題是一道基礎(chǔ)題.9、B【解析】
先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對(duì)應(yīng),縱坐標(biāo)與縱坐標(biāo)對(duì)應(yīng),切不可錯(cuò)位.10、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.11、A【解析】
設(shè)成立;反之,滿(mǎn)足,但,故選A.12、A【解析】
根據(jù)題意可知最后計(jì)算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計(jì)算的結(jié)果為的最大公約數(shù),按流程圖計(jì)算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點(diǎn)睛】本題考查的是利用更相減損術(shù)求兩個(gè)數(shù)的最大公約數(shù),難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
因?yàn)?,展開(kāi)后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當(dāng)且僅當(dāng),取等號(hào).故答案為:【點(diǎn)睛】本題主要考查利用基本不等式求最值,考查學(xué)生的轉(zhuǎn)化能力和運(yùn)算求解能力.14、【解析】
首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對(duì)任意的恒成立,可轉(zhuǎn)化為在上恒成立,進(jìn)而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域?yàn)?,且,函?shù)為奇函數(shù),當(dāng)時(shí),函數(shù),顯然此時(shí)函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點(diǎn)睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運(yùn)用,考查不等式的恒成立問(wèn)題,屬于常規(guī)題目.15、【解析】
對(duì)數(shù)函數(shù)的定義域需滿(mǎn)足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對(duì)函數(shù)有意義,即.故答案為:【點(diǎn)睛】本題考查求對(duì)數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.16、【解析】
因?yàn)椋?,又,所以,則,所以.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)28種;(2)分布見(jiàn)解析,.【解析】
(1)分這名女教師分別來(lái)自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個(gè)取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點(diǎn)睛】本題主要考查組合數(shù)與組合公式及離散型隨機(jī)變量的期望和方差,相對(duì)不難,注意運(yùn)算的準(zhǔn)確性.18、(1)證明見(jiàn)解析;(2)當(dāng)時(shí),AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過(guò)作,可證平面,根據(jù)計(jì)算,得出的大小,再計(jì)算的長(zhǎng).【詳解】(1)證明:連接BD交AC于點(diǎn)O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時(shí),AC與平面PCD所成的角為.【點(diǎn)睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計(jì)算,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據(jù)絕對(duì)值不等式的性質(zhì)可得,不等式對(duì)任意實(shí)數(shù)恒成立,等價(jià)于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當(dāng)時(shí),即,①當(dāng)時(shí),得,所以;②當(dāng)時(shí),得,即,所以;③當(dāng)時(shí),得成立,所以.故不等式的解集為.(Ⅱ)因?yàn)椋深}意得,則,解得,故的取值范圍是.20、;.【解析】
連接,由三角形相似得,,進(jìn)而得出,,寫(xiě)出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時(shí),有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.21、(1);(2)見(jiàn)解析.【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點(diǎn)存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點(diǎn)和極小值點(diǎn)分別為、,由(1)知,,且滿(mǎn)足,,于是得出,由得,利用正切函數(shù)的單調(diào)性推導(dǎo)出,再利用正弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】(1),,,當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,,,則函數(shù)在上單調(diào)遞增.,,,,.所以,函數(shù)在與不存在零點(diǎn),在區(qū)間和上各存在一個(gè)零點(diǎn).綜上所述,函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點(diǎn),所以,函數(shù)在區(qū)間與上各存在一個(gè)極值點(diǎn)、,且,,且滿(mǎn)足即,,,又,即,,,,,由在上單調(diào)遞增,得,再由在上單調(diào)遞減,得,即.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,同時(shí)也考查了利用導(dǎo)數(shù)證明不等式,考查分析問(wèn)題和解決問(wèn)題的能力,屬于難題.22、(1)見(jiàn)解析;(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版石灰石供應(yīng)合同模板
- 二零二五年度應(yīng)急管理及救援裝備租賃合同3篇
- 2025年度人工智能專(zhuān)利池共享與許可合同3篇
- 2025年度城市公共交通設(shè)施建設(shè)合同規(guī)范3篇
- 二零二四年商業(yè)地產(chǎn)項(xiàng)目新型業(yè)態(tài)招商代理服務(wù)合同樣本3篇
- 年度芳香除臭化學(xué)品:空氣清新劑產(chǎn)業(yè)分析報(bào)告
- 2025年新型材料現(xiàn)貨購(gòu)銷(xiāo)合同標(biāo)準(zhǔn)范本3篇
- 2024-2025學(xué)年高中歷史第二單元古希臘和古羅馬的政治制度單元總結(jié)學(xué)案含解析岳麓版必修1
- 2025年度校園配送服務(wù)食品安全快速檢測(cè)質(zhì)量管理體系建設(shè)合同3篇
- 2025年度人工智能算法工程師保密協(xié)議及知識(shí)產(chǎn)權(quán)保護(hù)合同3篇
- 2025年病案編碼員資格證試題庫(kù)(含答案)
- 企業(yè)財(cái)務(wù)三年戰(zhàn)略規(guī)劃
- 提高膿毒性休克患者1h集束化措施落實(shí)率
- 山東省濟(jì)南市天橋區(qū)2024-2025學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期期中考試試題
- 主播mcn合同模板
- 新疆2024年中考數(shù)學(xué)試卷(含答案)
- 2024測(cè)繪個(gè)人年終工作總結(jié)
- DB11 637-2015 房屋結(jié)構(gòu)綜合安全性鑒定標(biāo)準(zhǔn)
- 制造業(yè)生產(chǎn)流程作業(yè)指導(dǎo)書(shū)
- DB34∕T 4444-2023 企業(yè)信息化系統(tǒng)上云評(píng)估服務(wù)規(guī)范
- 福建中閩能源股份有限公司招聘筆試題庫(kù)2024
評(píng)論
0/150
提交評(píng)論