2024年遼寧省沈陽(yáng)市中考數(shù)學(xué)模擬練習(xí)卷(含答案)_第1頁(yè)
2024年遼寧省沈陽(yáng)市中考數(shù)學(xué)模擬練習(xí)卷(含答案)_第2頁(yè)
2024年遼寧省沈陽(yáng)市中考數(shù)學(xué)模擬練習(xí)卷(含答案)_第3頁(yè)
2024年遼寧省沈陽(yáng)市中考數(shù)學(xué)模擬練習(xí)卷(含答案)_第4頁(yè)
2024年遼寧省沈陽(yáng)市中考數(shù)學(xué)模擬練習(xí)卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省沈陽(yáng)市2024年中考數(shù)學(xué)模擬練習(xí)卷一.選擇題(共10小題,每小題3分,共30分)1.如果水庫(kù)的水位高于標(biāo)準(zhǔn)水位3m時(shí),記作+3m,那么低于標(biāo)準(zhǔn)水位2m時(shí),應(yīng)記作()A.﹣2m B.﹣1m C.+1m D.+2m2.圍棋,起源于中國(guó),古時(shí)稱“弈”,是一種策略型兩人棋類游戲.下列黑、白棋子擺成的圖案中,是軸對(duì)稱圖形的是()A.B. C. D.3.下列計(jì)算正確的是()A.x3?x2=x6 B.(xy)2=xy2 C.(x2)3=x5 D.x4.如圖,OC是∠BOA的平分線,直線l∥OB.若∠1=69°,則∠2的度數(shù)為()A.42° B.54.5° C.55.5° D.69°5.如圖,BD、AC是四邊形ABCD的對(duì)角線,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點(diǎn),下列條件中,能判定四邊形EFGH為菱形的是()A.AB=CD B.AC⊥BD C.AD=BC D.AC=BD4題5題6題6.如圖,點(diǎn)A是優(yōu)弧BC的中點(diǎn),過(guò)點(diǎn)B作AC的垂線交AC于點(diǎn)E,與圓交于點(diǎn)D.若∠BDC=60°,且AE=3,則圓的半徑為()A.23 B.3 C.32 7.在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與y=12x+1的圖象交于點(diǎn)A(2,a),且不等式12x+1>kx+b的解集為xA.k=?12,b=1 B.k=1,b=0 C.k=﹣1,b=4 D.k=2,b=8.中國(guó)清代算書(shū)《御制數(shù)理精蘊(yùn)》中有這樣一題:“馬四匹、牛六頭,共價(jià)四十八兩(‘兩’為我國(guó)古代貨幣單位):馬二匹、牛五頭,共價(jià)三十八兩.問(wèn)馬、牛各價(jià)幾何?”設(shè)馬每匹x兩,牛每頭y兩,根據(jù)題意可列方程組為()A.4x+6y=382x+5y=48 B.4x+6y=48C.4x+6y=485x+2y=38 D.9.一副三角板如圖所示擺放,則∠α與∠β的數(shù)量關(guān)系為()A.∠α+∠β=180° B.∠α+∠β=225° C.∠α+∠β=270° D.∠α=∠β10.如圖,在?ABCD中,AB=2,BC=3,以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交BC于點(diǎn)M,交CD于點(diǎn)N,再分別以點(diǎn)M,點(diǎn)N為圓心,大于12MN的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)F,射線CF交BA的延長(zhǎng)線于點(diǎn)E,則AEA.1 B.2 C.2 D.19題10題11題二.填空題(共5小題,每小題3分,共15分)11.寫(xiě)出一個(gè)比2大且比17小的整數(shù).12.如圖,點(diǎn)E是正方形ABCD內(nèi)的一點(diǎn),將△ABE繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)90°,得到△CBF.若∠ABE=55°,則∠EGC=度.13.一個(gè)不透明的箱子里裝有3個(gè)紅色小球和若干個(gè)白色小球,每個(gè)小球除顏色外其他完全相同,每次把箱子里的小球搖勻后隨機(jī)摸出一個(gè)小球,記下顏色后再放回箱子里.通過(guò)大量重復(fù)試驗(yàn)后,發(fā)現(xiàn)摸到紅色小球的頻率穩(wěn)定于0.75左右,則可估計(jì)箱子里有個(gè)白色小球.14.如圖,在平面直角坐標(biāo)系中,等邊△ABO的頂點(diǎn)B(2+3,0),正方形CDEF的頂點(diǎn)都在等邊△ABO的邊上,反比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)C,則14題15題15.如圖,在矩形ABCD中,AB=3,AD=4,E、F分別是邊BC、CD上一點(diǎn),EF⊥AE,將△ECF沿EF翻折得△EC′F,連接AC′,當(dāng)BE=時(shí),△AEC′是以AE為腰的等腰三角形.三.解答題(共8小題,共75分)16.(每小題5分,共10分)(1)計(jì)算:|?2|?4sin60°+((2)化簡(jiǎn):(17.(8分)為增加學(xué)生閱讀量,某校購(gòu)買了“科普類”和“文學(xué)類”兩種書(shū)籍,購(gòu)買“科普類”圖書(shū)花費(fèi)了3600元,購(gòu)買“文學(xué)類”圖書(shū)花費(fèi)了2700元,其中“科普類”圖書(shū)的單價(jià)比“文學(xué)類”圖書(shū)的單價(jià)多20%,購(gòu)買“科普類”圖書(shū)的數(shù)量比“文學(xué)類”圖書(shū)的數(shù)量多20本.(1)求這兩種圖書(shū)的單價(jià)分別是多少元?(2)學(xué)校決定再次購(gòu)買這兩種圖書(shū)共100本,且總費(fèi)用不超過(guò)1600元,求最多能購(gòu)買“科普類”圖書(shū)多少本?18.(9分)為全面提升中小學(xué)生體質(zhì)健康水平,我市開(kāi)展了兒童青少年“正脊行動(dòng)”.人民醫(yī)院專家組隨機(jī)抽取某校各年級(jí)部分學(xué)生進(jìn)行了脊柱健康狀況篩查.根據(jù)篩查情況,李老師繪制了兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:抽取的學(xué)生脊柱健康情況統(tǒng)計(jì)表類別檢查結(jié)果人數(shù)A正常170B輕度側(cè)彎C中度側(cè)彎7D重度側(cè)彎(1)求所抽取的學(xué)生總?cè)藬?shù);(2)該校共有學(xué)生1600人,請(qǐng)估算脊柱側(cè)彎程度為中度和重度的總?cè)藬?shù);(3)為保護(hù)學(xué)生脊柱健康,請(qǐng)結(jié)合上述統(tǒng)計(jì)數(shù)據(jù),提出一條合理的建議.19.(8分)我市“共富工坊”問(wèn)海借力,某公司產(chǎn)品銷售量得到大幅提升.為促進(jìn)生產(chǎn),公司提供了兩種付給員工月報(bào)酬的方案,如圖所示,員工可以任選一種方案與公司簽訂合同.看圖解答下列問(wèn)題:(1)直接寫(xiě)出員工生產(chǎn)多少件產(chǎn)品時(shí),兩種方案付給的報(bào)酬一樣多;(2)求方案二y關(guān)于x的函數(shù)表達(dá)式;(3)如果你是勞務(wù)服務(wù)部門的工作人員,你如何指導(dǎo)員工根據(jù)自己的生產(chǎn)能力選擇方案.20.(8分)“風(fēng)電”是未來(lái)全球最重要的清潔能源之一,在我們的身邊也經(jīng)常能見(jiàn)到“風(fēng)電”的身影,這些聳立在高山、草原上的“大風(fēng)車”構(gòu)成了一道道亮麗的風(fēng)景線.周日,某校項(xiàng)目學(xué)習(xí)小組的同學(xué)來(lái)到郊外山腳下,計(jì)劃測(cè)量一座風(fēng)力發(fā)電機(jī)組的塔筒AB的高度.如圖,斜坡CB的坡角∠BCE=30°,小穎同學(xué)在坡底C處測(cè)得塔筒頂端A的仰角為45°,小穎沿坡面CB前行120m到達(dá)D處,測(cè)得塔筒頂端A的仰角為60°.其中點(diǎn)A,B,C,D,E均在同一豎直平面內(nèi).請(qǐng)根據(jù)以上數(shù)據(jù)求塔筒AB的高度.(結(jié)果精確到1m,參考數(shù)據(jù):2≈1.41,321.(8分)如圖,AB為⊙O的直徑,AC是⊙O的切線,且AC=AB,連接CB交⊙O于點(diǎn)D,E為AC的中點(diǎn),連接BE交⊙O于點(diǎn)F,連接AD,CF,DF,AF.(1)求證:CE2=EF?EB;(2)若DF=1,求AF的長(zhǎng).22.(12分)【生活情境】為美化校園環(huán)境,某學(xué)校根據(jù)地形情況,要對(duì)景觀帶中一個(gè)長(zhǎng)AD=4m,寬AB=1m的長(zhǎng)方形水池ABCD進(jìn)行加長(zhǎng)改造(如圖①,改造后的水池ABNM仍為長(zhǎng)方形,以下簡(jiǎn)稱水池1).同時(shí),再建造一個(gè)周長(zhǎng)為12m的矩形水池EFGH(如圖②,以下簡(jiǎn)稱水池2).【建立模型】如果設(shè)水池ABCD的邊AD加長(zhǎng)長(zhǎng)度DM為x(m)(x>0),加長(zhǎng)后水池1的總面積為y1(m2),則y1關(guān)于x的函數(shù)解析式為:y1=x+4(x>0);設(shè)水池2的邊EF的長(zhǎng)為x(m)(0<x<6),面積為y2(m2),則y2關(guān)于x的函數(shù)解析式為:y2=﹣x2+6x(0<x<6),上述兩個(gè)函數(shù)在同一平面直角坐標(biāo)系中的圖象如圖③.【問(wèn)題解決】(1)若水池2的面積隨EF長(zhǎng)度的增加而減小,則EF長(zhǎng)度的取值范圍是(可省略單位),水池2面積的最大值是m2;(2)在圖③字母標(biāo)注的點(diǎn)中,表示兩個(gè)水池面積相等的點(diǎn)是,此時(shí)的x(m)值是;(3)當(dāng)水池1的面積大于水池2的面積時(shí),x(m)的取值范圍是;(4)在1<x<4范圍內(nèi),求兩個(gè)水池面積差的最大值和此時(shí)x的值;(5)假設(shè)水池ABCD的邊AD的長(zhǎng)度為b(m),其他條件不變(這個(gè)加長(zhǎng)改造后的新水池簡(jiǎn)稱水池3),則水池3的總面積y3(m2)關(guān)于x(m)(x>0)的函數(shù)解析式為:y3=x+b(x>0).若水池3與水池2的面積相等時(shí),x(m)有唯一值,求b的值.23.(12分)某學(xué)習(xí)小組的學(xué)生在學(xué)習(xí)中遇到了下面的問(wèn)題:如圖1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,點(diǎn)E,A,C在同一條直線上,連接BD,點(diǎn)F是BD的中點(diǎn),連接EF,CF,試判斷△CEF的形狀并說(shuō)明理由.問(wèn)題探究:(1)小婷同學(xué)提出解題思路:先探究△CEF的兩條邊是否相等,如EF=CF,以下是她的證明過(guò)程證明:延長(zhǎng)線段EF交CB的延長(zhǎng)線于點(diǎn)G.∵F是BD的中點(diǎn),∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12請(qǐng)根據(jù)以上證明過(guò)程,解答下列兩個(gè)問(wèn)題:①在圖1中作出證明中所描述的輔助線;②在證明的括號(hào)中填寫(xiě)理由(請(qǐng)?jiān)赟AS,ASA,AAS,SSS中選擇).(2)在(1)的探究結(jié)論的基礎(chǔ)上,請(qǐng)你幫助小婷求出∠CEF的度數(shù),并判斷△CEF的形狀.問(wèn)題拓展:(3)如圖2,當(dāng)△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)某個(gè)角度時(shí),連接CE,延長(zhǎng)DE交BC的延長(zhǎng)線于點(diǎn)P,其他條件不變,判斷△CEF的形狀并給出證明.參考答案一.選擇題(共10小題)1.A.2.D.3.D.4.C.5.A.6.A.7.C.8.B.9.B.10.A.二.填空題(共5小題)11.3(答案不唯一).12.80.13.1.14.3+3.15.78三.解答題(共8小題)16.(1)4,(2)?ab17.解:(1)設(shè)“文學(xué)類”圖書(shū)的單價(jià)為x元/本,則“科普類”圖書(shū)的單價(jià)為(1+20%)x元/本,依題意:3600(1+20%)x?20解之得:x=15.經(jīng)檢驗(yàn),x=15是所列方程的根,且符合題意,所以(1+20%)x=18.答:科普類書(shū)單價(jià)為18元/本,文學(xué)類書(shū)單價(jià)為15元/本;(2)設(shè)“科普類”書(shū)購(gòu)a本,則“文學(xué)類”書(shū)購(gòu)(100﹣a)本,依題意:18a+15(100﹣a)≤1600,解之得:a≤100因?yàn)閍是正整數(shù),所以a最大值=33.答:最多可購(gòu)“科普類”圖書(shū)33本.18.解:(1)抽取的學(xué)生總?cè)藬?shù)是:170÷85%=200(人),200×10%=20(人),200×(1﹣10%﹣85%)﹣7=200×5%﹣7=10﹣7=3(人),∴共有170+20+7+3=200(人),答:所抽取的學(xué)生總?cè)藬?shù)為200人.故答案為:20,3;(2)由扇形統(tǒng)計(jì)圖可得,脊柱側(cè)彎程度為中度和重度的總?cè)藬?shù)為:1600×(1﹣10%﹣85%)=1600×5%=80(人).答:估計(jì)脊柱側(cè)彎程度為中度和重度的總?cè)藬?shù)是80人;(3)答案不唯一,例如:該校學(xué)生脊柱側(cè)彎人數(shù)占15%,說(shuō)明該校學(xué)生脊柱側(cè)彎情況較為嚴(yán)重,建議學(xué)校要每天組織學(xué)生做護(hù)脊操等.19.解:(1)觀察圖象得:方案一與方案二相交于點(diǎn)(30,1200),∴員工生產(chǎn)30件產(chǎn)品時(shí),兩種方案付給的報(bào)酬一樣多;(2)設(shè)方案二的函數(shù)圖象解析式為y=kx+b,將點(diǎn)(0,600)、點(diǎn)(30,1200)代入解析式中:30k+b=1200b=600解得:k=20b=600即方案二y關(guān)于x的函數(shù)表達(dá)式:y=20x+600;(3)由兩方案的圖象交點(diǎn)(30,1200)可知:若生產(chǎn)件數(shù)x的取值范圍為0≤x<30,則選擇方案二,若生產(chǎn)件數(shù)x=30,則選擇兩個(gè)方案都可以,若生產(chǎn)件數(shù)x的取值范圍為x>30,則選擇方案一.20.解:過(guò)點(diǎn)D作DH⊥CE,垂足為H,延長(zhǎng)AB交CE于點(diǎn)F,過(guò)點(diǎn)D作DG⊥AF,垂足為F,由題意得:AF⊥CE,DH=FG,DG=HF,設(shè)DG=FH=x米,在Rt△CDH中,∠DCH=30°,CD=120米,∴DH=12CD=60(米),CH=3DH∴DH=FG=60米,CF=CH+HF=(x+603)米,在Rt△ADG中,∠ADG=60°,∴AG=DG?tan60°=3x∴AF=AG+FG=(3x+60)米,在Rt△ACF中,∠ACF=45°,∴AF=CF?tan45°=(x+603)米,∴x+603=3解得:x=60,∴CF=AF=(603+在Rt△BCF中,BF=CF?tan30°=(603+60)×33∴AB=AF﹣BF=603+60﹣(60+203)=403∴塔筒AB的高度約為69米.21.(1)證明:∵AB為⊙O的直徑,∴∠AFB=90°,∴AF⊥BE.∵AC是⊙O的切線,∴AC⊥AB,∴△AEF∽△BEA,∴AEEF∴AE2=EF?BE.∵E為AC的中點(diǎn),∴AE=EC,∴CE2=EF?EB;(2)解:∵CE2=EF?EB,∴CEEF∵∠CEF=∠BEC,∴△CEF∽△BEC.∴∠ECF=∠EBC,∠EFC=∠ECB.∵AC=AB,AC⊥AB,∴∠∠ACB=∠ABC=45°,∴∠EFC=45°.∵AB為⊙O的直徑,∴∠ADB=90°,∴∠DAB=∠ABD=45°,∵∠DFB=∠DAB,∴∠DFB=45°,∴∠EFC=∠DFB=45°.∵∠ECF=∠DBF,∴△CEF∽△BDF,∴EFDF∵AB=AC,∠CAB=90°,AD⊥BC,∴AD=CD=BD=22∵E為AC的中點(diǎn),∴CE=12∴CEBD∴EF1∴EF=2∵E為AC的中點(diǎn),AB=AC,∴AE=12∵∠EAB=90°,AF⊥BE,∴△AEF∽△BAF,∴EFAF∴AF=2EF=222.解:(1)∵y2=﹣x2+6x=﹣(x﹣3)2+9,又∵﹣1<0,∴拋物線的開(kāi)口方向向下,當(dāng)x≥3時(shí),水池2的面積隨EF長(zhǎng)度的增加而減小,∵0<x<6,∴當(dāng)3≤x<6時(shí),水池2的面積隨EF長(zhǎng)度的增加而減小,水池2面積的最大值是9m2.故答案為:3≤x<6;9;(2)由圖象可知:兩函數(shù)圖象相交于點(diǎn)C,E,此時(shí)兩函數(shù)的函數(shù)值相等,即:x+4=﹣x2+6x,解得:x=1或4,∴表示兩個(gè)水池面積相等的點(diǎn)是:C,E,此時(shí)的x(m)值是:1或4.故答案為:C,E;1或4;(3)由圖象知:圖象中點(diǎn)C的左側(cè)部分和點(diǎn)E的右側(cè)部分,一次函數(shù)的函數(shù)值大于二次函數(shù)的函數(shù)值,即當(dāng)0<x<1或4<x<6時(shí),水池1的面積大于水池2的面積,故答案為:0<x<1或4<x<6;(4)在拋物線上的CE段上任取一點(diǎn)F,過(guò)點(diǎn)F作FG∥y軸交線段CE于點(diǎn)G,則線段FG表示兩個(gè)水池面積差,設(shè)F(m,﹣m2+6m),則G(m,m+4),∴FG=(﹣m2+6m)﹣(m+4)=﹣m2+5m﹣4=?(m?5∵﹣1<0,∴當(dāng)m=52時(shí),F(xiàn)G有最大值為∴在1<x<4范圍內(nèi),兩個(gè)水池面積差的最大值為94,此時(shí)x的值為5(5)∵水池3與水池2的面積相等,∴y3=y(tǒng)2,即:x+b=﹣x2+6x,∴x2﹣5x+b=0.∵若水池3與水池2的面積相等時(shí),x(m)有唯一值,∴Δ=(﹣5)2﹣4×1×b=0,解得:b=25∴若水池3與水池2的面積相等時(shí),x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論