初中數(shù)學圓的知識點歸納_第1頁
初中數(shù)學圓的知識點歸納_第2頁
初中數(shù)學圓的知識點歸納_第3頁
初中數(shù)學圓的知識點歸納_第4頁
初中數(shù)學圓的知識點歸納_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第第頁初中數(shù)學圓的知識點歸納

1.不在同一貫線上的三點確定一個圓。

2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3.圓是以圓心為對稱中心的中心對稱圖形

4.圓是定點的距離等于定長的點的集合

5.圓的內部可以看作是圓心的距離小于半徑的點的集合

6.圓的外部可以看作是圓心的距離大于半徑的點的集合

7.同圓或等圓的半徑相等

8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10.推論在同圓或等圓中,假如兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

11定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

12.①直線L和⊙O相交d

②直線L和⊙O相切d=r

③直線L和⊙O相離dr

13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線

14.切線的.性質定理圓的切線垂直于經過切點的半徑

15.推論1經過圓心且垂直于切線的直線必經過切點

16.推論2經過切點且垂直于切線的直線必經過圓心

17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

18.圓的外切四邊形的兩組對邊的和相等外角等于內對角

19.假如兩個圓相切,那么切點肯定在連心線上

20.①兩圓外離dR+r②兩圓外切d=R+r

③.兩圓相交R-rr)

④.兩圓內切d=R-r(Rr)⑤兩圓內含dr)

21.定理相交兩圓的連心線垂直平分兩圓的公共弦

22.定理把圓分成n(n3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

24.正n邊形的每個內角都等于(n-2)180/n

25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

26.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

27.正三角形面積3a/4a表示邊長

28.假如在一個頂點四周有k個正n邊形的角,由于這些角的和應為360,因此k(n-2)180/n=360化為(n-2)(k-2)=4

29.弧長計算公式:L=n兀R/180

30.扇形面積公式:S扇形=n兀R^2/360=LR/2

31.內公切線長=d-(R-r)外公切線長=d-(R+r)

32.定理一條弧所對的圓周角等于它所對的圓心角的一半

33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

34.推論2半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑

35.弧長公式l=a*ra是圓心角的弧度數(shù)r0扇形面積公式s=1/2*l*r

中學數(shù)學中考圓的知識點

圓的知識:平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

圓心:

(1)如定義(1)中,該定點為圓心

(2)如定義(2)中,繞的那一端的端點為圓心。

(3)圓任意兩條對稱軸的交點為圓心。

(4)垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

注:圓心一般用字母O表示

直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

圓的直徑和半徑都有很多條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

圓的半徑或直徑決斷圓的大小,圓心決斷圓的位置。

圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

圓的周長與直徑的比值叫做圓周率。

圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。

直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。

一條弧所對的圓周角是圓心角的二分之一。

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

在同圓或等圓中,假如兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

中學數(shù)學直線和圓的位置關系知識點總結

①直線和圓無公共點,稱相離。AB與圓O相離,dr。

②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

平面內,直線A*+By+C=0與圓*^2+y^2+D*+Ey+F=0的位置關系判斷一般方法是:

1.由A*+By+C=0,可得y=(-C-A*)/B,(其中B不等于0),代入*^2+y^2+D*+Ey+F=0,即成為一個關于*的方程

假如b^2-4ac0,那么圓與直線有2交點,即圓與直線相交。

假如b^2-4ac=0,那么圓與直線有1交點,即圓與直線相切。

假如b^2-4ac0,那么圓與直線有0交點,即圓與直線相離。

2.假如B=0即直線為A*+C=0,即*=-C/A,它平行于y軸(或垂直于*軸),將*^2+y^2+D*+Ey+F=0化為(*-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個*值*1、*2,并且規(guī)定*1

當*=-C/A*2時,直線與圓相離;

小升初數(shù)學圓的知識點總結

1.圓中心的一點叫圓心,用O表示。一端在圓心,另一端在圓上的線段叫半徑,用r表示。

兩端都在圓上,并過圓心的線段叫直徑,用d表示。

2.圓有很多條半徑,有很多條直徑。

3.圓心決斷圓的位置,半徑決斷圓的大小。

4.把圓對折,再對折就能找到圓心。

5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有很多條對稱軸。

6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.

圓的周長

8.圓的周長除以直徑的商是一個固定的數(shù),叫做圓周率,用字母表示,計算時通常取3.14.

9.C=d或C=r.半圓的周長

10.1=3.142=6.283=9.424=12.565=15.76=18.84

7=21.988=25.129=28.2610=31.4

圓的面積

11.用S表示圓的面積,r表示圓的半徑,那么S=r^2S環(huán)=(R^2-r^2)

12.11^2=12112^2=14413^2=16914^2=19615^2=22516^2=256

17^2=28918^2=32419^2=36120^2=400

13.周長相等時,圓的面積最大。面積相等時,圓的周長最小。

面積相同時,長方形的周長最長,正方形居中,圓周長最短。

周長相同時,圓面積最大,正方形居中,長方形面積最小。

周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。

第四單元:比的認識

15.兩個數(shù)相除,又叫做這兩個數(shù)的比。比的后項不能為0.

16.比的前項和后項同時乘上或除以一個相同的數(shù)(0除外)。比值不變,這叫做比的基本性質。由于在平面直角坐標系中,先畫*軸,而*軸上的坐標表示列。先用小括號將兩個數(shù)括起來,再用逗號將兩個數(shù)隔開。括號里面的數(shù)由左至右為列數(shù)和行數(shù)。

列數(shù)與行數(shù)需要是詳細的數(shù),而不能用字母如(*,5)表示,它表述一條橫線,(5,Y)它表示一條豎線,都不能確定一個點。

二、分數(shù)乘法

分數(shù)乘法意義:1、分數(shù)乘整數(shù)是求幾個相同加數(shù)的和的簡便運算,與整數(shù)乘法的意義相同。

2、分數(shù)乘分數(shù)是求一個數(shù)的幾分之幾是多少。

分數(shù)的化簡:分子、分母同時除以它們的最大公因數(shù)。

關于分數(shù)乘法的計算:可在乘的過程中約分,提倡在計算過程中約分,這樣簡便。

分數(shù)的基本性質:分子分母同時乘或者除以一個相同的數(shù)時(0除外),分數(shù)值不變。

倒數(shù)的意義:乘積為1的兩個數(shù)互為倒數(shù)。

特別強調:互為倒數(shù),即倒數(shù)是兩個數(shù)的關系,它們相互依存,倒數(shù)不能單獨存在。

求倒數(shù)的方法:1、求分數(shù)的倒數(shù)是交換分子分母的位置。

2、求整數(shù)的倒數(shù)是把整數(shù)看做分母是1的分數(shù),再交換分子分母的位置。

1的倒數(shù)是它本身。由于1*1=1

0沒有倒數(shù)。0乘任何數(shù)都得0=0*1,1/0(分母不能為0)

三、分數(shù)除法

分數(shù)除法是分數(shù)乘法的逆運算,就是已知兩個數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。

除以一個數(shù)是乘這個數(shù)的倒數(shù),除以幾就是乘這個數(shù)的幾分之一。

分數(shù)除法的基本性質:強調0除外

比:兩個數(shù)相除也叫兩個數(shù)的比。比表示兩個數(shù)的關系,可以寫成比的形式,也可以用分數(shù)表示,但仍讀幾比幾。比值是一個數(shù),可以是整數(shù),分數(shù),也可以是小數(shù)。比可以表示兩個相同量的關系,即倍數(shù)關系。也可以表示兩個不同量的比,得到一個新量。例:路程/速度=時間。

化簡比:

1、用比的前項和后項同時除以它們的最大公約數(shù)。

2、兩個分數(shù)的比,用前項后項同時乘分母的最小公倍數(shù),再按化簡整數(shù)比的方法來化簡。

3、兩個小數(shù)的比,向右移動小數(shù)點的位置。也是先化成整數(shù)比。

比和除法、分數(shù)的區(qū)分:除法是一種運算,分數(shù)是一個數(shù),比表示兩個數(shù)的關系。

常用來做判斷的:

一個數(shù)除以小于1的數(shù),商大于被除數(shù)。

一個數(shù)除以1,商等于被除數(shù)。

一個數(shù)除以大于1的數(shù),商小于被除數(shù)。

五、百分數(shù)

百分數(shù)的約分:百分數(shù)化成分數(shù),寫成分數(shù)形式,再約分。

分數(shù)表是一個數(shù),也可以表示兩個數(shù)的關系,百分數(shù)只表示兩個數(shù)的關系,沒有單位。

百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾,也叫百分率或者百分比。

一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。

六、統(tǒng)計

條形統(tǒng)計圖可以知道每個數(shù)量的多少。

折現(xiàn)統(tǒng)計圖可以知數(shù)量的增減,

扇形統(tǒng)計圖可以知道部分和總量的關系。

小升初考試數(shù)學圓的知識點復習

(1)圓的認識

平面上的一種曲線圖形。

圓中心的一點叫做圓心。一般用字母o表示。

半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。

在同一個圓里,有很多條半徑,每條半徑的長度都相等。

通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。

同一個圓里有很多條直徑,全部的直徑都相等。

同一個圓里,直徑等于兩個半

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論