版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第八講空間自相關(guān)分析
SpatialAutocorrelation1SpatialAutocorrelation:
Moran’sI2SpatialAutocorrelationandMoran’sISeveraltestsexistformeasuringthespatialautocorrelationrelatingtoareasorpoints.OnesuchmeasurehasbeendevisedbyMoran(1950)andcanbeappliedtoareapatternsandtopointpatterns.ForarealdatatheequationforMoran’scoefficientis:WhereI=Moran’sspatialautocorrelationcoefficient n=thenumberofareasinthestudyregion J=thenumberofjoins X=avalueforanarea(ordinalorinterval) Xi,Xj=aretwocontiguousareas(oneithersideofajoin) c=apairofcontiguousareas3HypotheticalStudyRegion4CalculationsforMoran’s
SpatialAutocorrelationCoefficientI5CalculationsforMoran’s
SpatialAutocorrelationCoefficientI6CalculatedMoran’sIMoran’sICalculated:Moran’scoefficient(I)is-0.183,althoughthisvalueonitsownisnotverymuchuseindescribingthedegreeofspatialautocorrelationinavariable.TherangeofpossiblevaluesofIdependsonthespatialstructureoftheparticularregion.TodeterminewhatthevalueofIimpliesitisnecessarytocarryoutasignificancetest.7SignificanceThesignificancetestinvolvescalculatingthestandardnormaldeviatefromthecalculatedvalueofI,theexpectedvalueI,anditsstandarddeviation.Therearetwopossibleformsofthenullhypothesis: normalityandrandomizationNormality:Thenullhypothesisisthattheobservedvaluesofthevariablearetheresultofarandomsamplefromanormallydistributedpopulationofvalues.Randomization:Thequestionaskedis“givenaparticularsetofvaluesX,whatisthepossibilitythattheycouldhavebeenarrangedintheobservedwaybychance?Thenullhypothesisisthatthespatialdistributionisrandom.8NormalityTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:Where n=thenumberofareasinthestudyregion J=thenumberofjoins L=thenumberofareastowhichanareaisjoined
9NormalitySubstitutingvaluesintotheformulaweget:Theequationforthestandarddeviationofthisvalueis:ThepreviouslycalculatedvalueofIcannowbeconvertedintoastandardnormaldeviateusingthefollowingequation:10NormalityNotethattheexpectedvalueofIforarandomarrangementissmallandnegative(-0.2)Asmallervalue,onefurtherfromzerointhenegativedirectionimpliesdispersion.Positivevaluesimplyclustering.AfterconvertingtheobservedItoastandardnormaldeviate,itssignificancecanbeassessedbyreferencetoatableofcriticalvalues.11NormalityAdoptingthe0.05significancelevel,thetwo-tailedcriticalvalueforapositivestandardnormaldeviateis1.96.Atwo-tailedtestisappropriate,sincenospecificdirectionofdepartureishypothesized.Theobservedvalue(0.061)islessthanthecriticalvalue,sothenullhypothesismaynotberejected.Theobservedarrangementofvaluesisnotsignificantlydifferentfromrandom(randomlysamplingfromanormaldistribution).Itcouldhaveeasilyoccurredunderthenullhypothesisofrandomsamplingfromanormallydistributedpopulation.12RandomizationTheequationfortheexpectedvalueofIunderthenullhypothesisofrandomizationis:Theequationforthestandarddeviationofthisvalueisrathermorecomplex:Where k=kurtosisKurtosisisameasureofpeaknessofthedistributionofX13CalculationofKurtosisforRandomizationSignificanceTestofI14RandomizationSubstitutingvaluesintotheformulaweget:Theequationforthestandarddeviationofthisvalueis:ThepreviouslycalculatedvalueofIcannowbeconvertedintoastandardnormaldeviateusingthefollowingequation:At0.01significancelevelthetwo-tailedcriticalvalueis2.576. Sincethecalculatedvalueislessthanthecriticalvaluethenullhypothesisisnotrejected.Theobservedarrangementisnotsignificantlydifferentfromrandom.Itcouldhaveoccurredbychance.15CometruewithArcGISArcToolbox>SpatialStatisticsTools>AnalyzingPatterns>SpatialAutocorrelation(Moran’sI)OrHigh-LowClustering(Getis-OrdGeneralG)(吉瑞C)吉瑞C在[0,2]之間吉瑞C:0-1表示空間正相關(guān)吉瑞C:1-2表示空間負(fù)相關(guān)吉瑞C=1表示相互獨(dú)立Moran’sI在[0,1]之間Moran’sI接近于1,表示空間正相關(guān),即高高相鄰,低低相鄰Moran’sI接近于-1,表示空間負(fù)相關(guān),即高低相鄰,低高相鄰Moran’sI接近于0,表示空間無相關(guān)性,即隨機(jī)分布16ExercisewithBeijingtown17FurtherTopicsinSpatialAutocorrelation18SpatialAutocorrelationforPointDataMeasuresofspatialautocorrelationcanbeextendedtosituationsofpointvalues.Withpointdata,insteadofconsideringtherelationshipbetweenpairsofcontiguousareavalues,itisnecessarytomeasuretherelationshipbetweenallpairsofpointvalues,takingintoaccountthedistancesseparatingthem.Iftherearenpoints,therewillben(n-1)/2possiblepairsofpoints.Withasfewas20pointsthismeans190pairsofvaluestobemultipliedandsummed.Thetechniquecanbequiteeasilycomputerized(verytediousbyhand).Wewillreviewasimpleexample.19RevisedMoran’sIforPointPatternsThetestforspatialautocorrelationinpointpatternsisarevisedversionofMoran’scoefficient:WhereI=Moran’sspatialautocorrelationcoefficient n=thenumberofpoints Wij=theweightgiventotherelationshipbetween twopointsiandj p=apairofpointsTheweightisusuallythereciprocalofthedistancebetweenthetwopoints.Thedistancebetweenpointsiandjaredefinedasdij,thusWij=1/dij.Eachweightismeanttobeameasureoftheinfluenceexertedbyonepointonanother.Theuseofthereciprocalofdistanceasaweightimpliesthattheinfluencedecreaseswithdistance.20SignificanceTest:NormalityTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:where
Thenullhypothesisofnormalityinvolvestheassumptionthatthepointvalueswithinthestudyregioncanberegardedasarandomsampleofvaluesdrawnfromanormallydistributedpopulation.21StepsforcalculatingsignificancefornormalityThecalculationofthisexpressioncanbethoughtofintermsofanumberofsteps:Foreachpointadduptheweightsbetweenitandallotherpointstoget:Squarethetotal,toget foreachpoint.Addupallthesesquaredtotals,togetWewillexamineanapplicationofthesestepsforthistest.22SignificanceTest:RandomizationTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:whereTherandomizationnullhypothesisonlytakesintoaccounttheparticularsetofpointswithinthestudyregionIngeneral,randomizationisthesaferchoicesinceitinvolvesfewerassumptions23HypotheticalPointPattern24Calculationsforallpoints25Calculationsforallpairsofpoints26Wij=1/dijCalculationsrelatingtothematrixofweights27CalculatedMoran’sIMoran’sICalculated:Moran’scoefficient(I)is-0.0825,althoughthisvalueonitsownisnotverymuchuseindescribingthedegreeofspatialautocorrelationinavariable.TherangeofpossiblevaluesofIdependsonthespatialstructureoftheparticularpointpattern.TodeterminewhatthevalueofIimpliesitisthereforenecessarytocarryoutasignificancetest.28SignificanceTest:NormalityTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:Therefore
Assumingatwo-tailedtestatthe0.05significancelevel,theobserveddegreeofspatialautocorrelationisnotsignificant(criticalvaluez=1.96)29SignificanceTest:RandomizationTheequationfortheexpectedvalueofIunderthenullhypothesisofnormalityis:Theequationforthestandarddeviationofthisvalueis:Therefore
Assumingatwo-tailedtestatthe0.05significancelevel,theobserveddegreeofspatialautocorrelationisnotsignificant(criticalvaluez=1.96)30FromGlobaltoLocal
MeasuresofSpatialPattern31
HepatitisRatesofCaliforniaCountiesin1998(per100,000pop.)
33LocalSpatialStatisticsGeneraltestsaredesignedtoprovideasinglemeasureofoverallpatternforamapconsistingofpointlocationsThesegeneraltestsprovideatestofthenullhypothesisthatthereisnounderlyingpattern,ordeviationfromrandomness,amongthesetofpoints.Examples:nearestneighbortest,thequadratmethod,andMoran’sIThesearecalledGLOBALstatistics–asinglesummaryvalue.LocalSpatialStatisticsSometimestheresearcherwantstoknowifthereisaclusterofeventsaroundasingleorsmallnumberoffoci.Forexample,doesdiseaseclusteraroundatoxicwastesite,crimeclusteraroundexoticdancingestablishments.Sometimeswewanttohaveamethodtodetectclustering.Noaprioriideajustaneedtodetermineifclustersexist.ThesearecalledLOCALspatialstatistics.LocalMoran’sILocalMoran’sIisalocalspatialautocorrelationstatisticbasedontheMoran’sIstatistic.ItwasdevelopedbyAnselin(1995)asalocalindicatorofspatialassociation(LISAstatistic)AnselindefinesLISAashavingthefollowingproperties:TheLISAforeachobservationgivesanindicationoftheextentofsignificantspatialclusteringofsimilarvaluesaroundthatobservation;ThesumofLISAsforallobservationsisproportionaltoaglobalindicatorofspatialassociation.36AnalysisAnalysisisverysimilartothatofglobalMoran’sI.ValuesofIithatexceedE(Ii)indicatepositivespatialautocorrelation,inwhichsimilarvalues,eitherhighvaluesorlowvaluesarespatiallyclusteredaroundpointi.ValuesofIibelowE(Ii)indicatenegativespatialautocorrelation,inwhichneighboringvaluesaredissimilartothevalueatpointi.Again,anormallydistributedZstatistic(2-tailed)iscalculatedtodeterminesignificance.37Spatialweightingmethodstheinputcanalsobeaweight,m,thatthedistanceisraisedinordertoshowtheinfluenceofdistance.Anexampleofthismightbewhichdisraisedtothepowerofm=2.Forthistypeofweightingscheme,thestatisticiscalculatedforbandsonly.BearinmindthateachIivalueforagivensiteIrepresentsassociationbetweentheithsiteandonlythejvaluesinagivenband.38FormulaforLocalMoran’sITheformulais:Where andPerhapsRemember,whenthisweightingschemeisused,thestatisticiscalculatedforbandsonly.Aspatialweightsmatrixmayalsobeused.39RandomizationHypothesisTheExpectedvalueis:Thevarianceis: Where: 40LocalSpatialStatistics:Getis’sGiStatisticTherearetwovariationsofthisstatistic,dependingonwhethertheunit(observation)iaroundwhichtheclusteringismeasuredisincludedinthecalculations.Gidoesnotincludetheobservationaroundwhichthemeasureisbeingcalculated.
Gi*doesincludetheobservationaroundwhichthemeasureisbeingcalculated.Getis’GiPurpose:totestwhetherclusteringexistsaroundacertainlocation(i)Where GiisthemeasureoflocalclusteringofattributeXaroundi, XjisthevalueofXatj, Wijrepresentsthestrengthofthespatialrelationshipbetween unitsiandjwhichcanbemeasuredaseitherabinary contiguityvariableoracontinuousdistance-decaymeasureIfhighvaluesofXareclusteredaroundi,Giwillbehigh.IflowvaluesofXareclusteredaroundi,Giwillbelow.Noclusteringofvaluesaroundi,Giwillbeintermediate.Getis’GiTheexpectedvalueofGiis:where Andthevarianceis:Wherethesubscriptiindicatesthecalculationofthemeanandvarianceofxexcludingthevalueati.43Getis’sG*iStatisticPurpose:totestwhetheraparticularlocationianditssurroundingregionhavehigherthanaveragevaluesonavariableofinterest.OrdandGetis(19
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國淋浴節(jié)水裝置行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國紗線測濕儀數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國玉山薄雪草數(shù)據(jù)監(jiān)測研究報(bào)告
- 二零二五年度個(gè)人租賃車輛保險(xiǎn)合同2篇
- 2025版?zhèn)€人合伙退伙協(xié)議書糾紛處理指南4篇
- 房東房屋出租合同模板
- 重慶市農(nóng)村住房租賃合同
- 2025年全球及中國家電外觀復(fù)合材料行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球液壓密封膠行業(yè)調(diào)研及趨勢分析報(bào)告
- 二零二四年度養(yǎng)殖行業(yè)勞動(dòng)聘用合同范本6篇
- 《openEuler操作系統(tǒng)》考試復(fù)習(xí)題庫(含答案)
- 《天潤乳業(yè)營運(yùn)能力及風(fēng)險(xiǎn)管理問題及完善對(duì)策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會(huì)章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 北師大版五年級(jí)上冊數(shù)學(xué)期末測試卷及答案共5套
- 2024-2025學(xué)年人教版生物八年級(jí)上冊期末綜合測試卷
- 2025年九省聯(lián)考新高考 語文試卷(含答案解析)
- 全過程工程咨詢投標(biāo)方案(技術(shù)方案)
- 心理健康教育學(xué)情分析報(bào)告
- 農(nóng)民專業(yè)合作社財(cái)務(wù)報(bào)表(三張報(bào)表)
- 安宮牛黃丸的培訓(xùn)
評(píng)論
0/150
提交評(píng)論