版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
IntroductionCourseObjectives
Thiscoursegivesanintroductiontobasicneuralnetworkarchitecturesandlearningrules.Emphasisisplacedonthemathematicalanalysisofthesenetworks,onmethodsoftrainingthemandontheirapplicationtopracticalengineeringproblemsinsuchareasaspatternrecognition,signalprocessingandcontrolsystems.WhatWillNotBeCoveredReviewofallarchitecturesandlearningrulesImplementationVLSIOpticalParallelComputersBiologyPsychologyHistoricalSketchPre-1940:vonHemholtz,Mach,Pavlov,etc.Generaltheoriesoflearning,vision,conditioningNospecificmathematicalmodelsofneuronoperation1940s:Hebb,McCullochandPittsMechanismforlearninginbiologicalneuronsNeural-likenetworkscancomputeanyarithmeticfunction1950s:Rosenblatt,WidrowandHoffFirstpracticalnetworksandlearningrules1960s:MinskyandPapertDemonstratedlimitationsofexistingneuralnetworks,newlearningalgorithmsarenotforthcoming,someresearchsuspended1970s:Amari,Anderson,Fukushima,Grossberg,KohonenProgresscontinues,althoughataslowerpace1980s:Grossberg,Hopfield,Kohonen,Rumelhart,etc.ImportantnewdevelopmentscausearesurgenceinthefieldApplicationsAerospaceHighperformanceaircraftautopilots,flightpathsimulations,aircraftcontrolsystems,autopilotenhancements,aircraftcomponentsimulations,aircraftcomponentfaultdetectorsAutomotiveAutomobileautomaticguidancesystems,warrantyactivityanalyzersBankingCheckandotherdocumentreaders,creditapplicationevaluatorsDefenseWeaponsteering,targettracking,objectdiscrimination,facialrecognition,newkindsofsensors,sonar,radarandimagesignalprocessingincludingdatacompression,featureextractionandnoisesuppression,signal/imageidentificationElectronicsCodesequenceprediction,integratedcircuitchiplayout,processcontrol,chipfailureanalysis,machinevision,voicesynthesis,nonlinearmodelingApplicationsFinancialRealestateappraisal,loanadvisor,mortgagescreening,corporatebondrating,creditlineuseanalysis,portfoliotradingprogram,corporatefinancialanalysis,currencypricepredictionManufacturingManufacturingprocesscontrol,productdesignandanalysis,processandmachinediagnosis,real-timeparticleidentification,visualqualityinspectionsystems,beertesting,weldingqualityanalysis,paperqualityprediction,computerchipqualityanalysis,analysisofgrindingoperations,chemicalproductdesignanalysis,machinemaintenanceanalysis,projectbidding,planningandmanagement,dynamicmodelingofchemicalprocesssystemsMedicalBreastcancercellanalysis,EEGandECGanalysis,prosthesisdesign,optimizationoftransplanttimes,hospitalexpensereduction,hospitalqualityimprovement,emergencyroomtestadvisementApplicationsRoboticsTrajectorycontrol,forkliftrobot,manipulatorcontrollers,visionsystemsSpeechSpeechrecognition,speechcompression,vowelclassification,texttospeechsynthesisSecuritiesMarketanalysis,automaticbondrating,stocktradingadvisorysystemsTelecommunicationsImageanddatacompression,automatedinformationservices,real-timetranslationofspokenlanguage,customerpaymentprocessingsystemsTransportationTruckbrakediagnosissystems,vehiclescheduling,routingsystemsBiology?Neuronsrespondslowly –10-3scomparedto10-9sforelectricalcircuits?Thebrainusesmassivelyparallelcomputation
–?1011neuronsinthebrain
–?104connectionsperneuronNeuronModelandNetworkArchitecturesSingle-InputNeuronTransferFunctionsTransferFunctionsMultiple-InputNeuronAbreviatedNotationLayerofNeuronsAbbreviatedNotationWw11,w12,?w1R,w21,w22,?w2R,wS1,wS2,?wSR,=b12S=bbbpp1p2pR=aa1a2aS=MultilayerNetworkAbreviatedNotationHiddenLayersOutputLayerDelaysandIntegratorsRecurrentNetworkAnIllustrativeExampleApple/BananaSorterPrototypeVectorsPrototypeBananaPrototypeAppleShape:{1:round;-1:eliptical}Texture:{1:smooth;-1:rough}Weight:{1:>1lb.;-1:<1lb.}MeasurementVectorPerceptronTwo-InputCaseDecisionBoundaryApple/BananaExampleThedecisionboundaryshouldseparatetheprototypevectors.Theweightvectorshouldbeorthogonaltothedecisionboundary,andshouldpointinthedirectionofthevectorwhichshouldproduceanoutputof1.ThebiasdeterminesthepositionoftheboundaryTestingtheNetworkBanana:Apple:“Rough”Banana:HammingNetworkFeedforwardLayerForBanana/AppleRecognitionRecurrentLayerHammingOperationInput(RoughBanana)FirstLayerHammingOperationSecondLayerHopfieldNetworkApple/BananaProblemTest:“Rough”Banana(Banana)SummaryPerceptronFeedforwardNetworkLinearDecisionBoundaryOneNeuronforEachDecisionHammingNetworkCompetitiveNetworkFirstLayer–PatternMatching(InnerProduct)SecondLayer–Competition(Winner-Take-All)#Neurons=#PrototypePatternsHopfieldNetworkDynamicAssociativeMemoryNetworkNetworkOutputConvergestoaPrototypePattern#Neurons=#ElementsineachPrototypePatternPerceptronLearningRuleLearningRules?SupervisedLearning
Networkisprovidedwithasetofexamples ofpropernetworkbehavior(inputs/targets)?ReinforcementLearning
Networkisonlyprovidedwithagrade,orscore, whichindicatesnetworkperformance?UnsupervisedLearning
Onlynetworkinputsareavailabletothelearning algorithm.Networklearnstocategorize(cluster) theinputs.PerceptronArchitectureWw11,w12,?w1R,w21,w22,?w2R,wS1,wS2,?wSR,=wiwi1,wi2,wiR,=WwT1wT2wTS=Single-NeuronPerceptronDecisionBoundary? Allpointsonthedecisionboundaryhavethesameinnerproductwiththeweightvector.? Thereforetheyhavethesameprojectionontotheweightvector,andtheymustlieonalineorthogonaltotheweightvectorExample-ORORSolutionWeightvectorshouldbeorthogonaltothedecisionboundary.Pickapointonthedecisionboundarytofindthebias.Multiple-NeuronPerceptronEachneuronwillhaveitsowndecisionboundary.Asingleneuroncanclassifyinputvectorsintotwocategories.Amulti-neuronperceptroncanclassifyinputvectorsinto2Scategories.LearningRuleTestProblemStartingPointPresentp1tothenetwork:Randominitialweight:IncorrectClassification.TentativeLearning
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計(jì)件員工勞動(dòng)合同
- 2024房地產(chǎn)經(jīng)紀(jì)委托合同
- 2024標(biāo)準(zhǔn)密封膠買賣合同書樣本版
- 2024年項(xiàng)目實(shí)施階段服務(wù)協(xié)議范本版B版
- 2024無息企業(yè)節(jié)能減排資金借款協(xié)議3篇
- 2024年福建省高速清障救援服務(wù)合同
- 2024廣告合作協(xié)議
- 醫(yī)用耗材合同管理制度內(nèi)容
- 機(jī)械制圖期末訓(xùn)練復(fù)習(xí)測試卷附答案
- 2025年移動(dòng)通訊用數(shù)字程控交換機(jī)項(xiàng)目申請報(bào)告
- 化學(xué)-山東省濰坊市、臨沂市2024-2025學(xué)年度2025屆高三上學(xué)期期末質(zhì)量檢測試題和答案
- 領(lǐng)導(dǎo)學(xué) 課件全套 孫健 第1-9章 領(lǐng)導(dǎo)要素- 領(lǐng)導(dǎo)力開發(fā)
- 2024-2025學(xué)年七年級(jí)上學(xué)期語文期末考前押題卷(統(tǒng)編版2024+含答案)
- 土建定額培訓(xùn)課件
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之13:“6策劃-6.2創(chuàng)新目標(biāo)及其實(shí)現(xiàn)的策劃”(雷澤佳編制-2025B0)
- 2024年保護(hù)環(huán)境的建議書范文(33篇)
- 2025新譯林版英語七年級(jí)下單詞默寫表
- 退休人員公益活動(dòng)合作合同
- 四年級(jí)數(shù)學(xué)(四則混合運(yùn)算帶括號(hào))計(jì)算題專項(xiàng)練習(xí)與答案
- 急診創(chuàng)傷疼痛護(hù)理
- 2022年期貨從業(yè)資格《期貨基礎(chǔ)知識(shí)》考試題庫(含典型題)
評論
0/150
提交評論