




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省咸寧市三校聯(lián)考2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.2.如圖,中,,,,則的值是()A. B. C. D.3.下列說法正確的是()A.菱形都是相似圖形 B.矩形都是相似圖形C.等邊三角形都是相似圖形 D.各邊對應(yīng)成比例的多邊形是相似多邊形4.某校校園內(nèi)有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是()A. B. C. D.5.將y=﹣(x+4)2+1的圖象向右平移2個單位,再向下平移3個單位,所得函數(shù)最大值為()A.y=﹣2 B.y=2 C.y=﹣3 D.y=36.某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設(shè)平均每次降價的百分率為x,根據(jù)題意所列方程正確的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=257.將拋物線y=2x2向左平移1個單位,再向上平移3個單位得到的拋物線,其解析式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3C.y=2(x+1)2-3 D.y=2(x-1)2+38.若|m|=5,|n|=7,m+n<0,則m﹣n的值是()A.﹣12或﹣2 B.﹣2或12 C.12或2 D.2或﹣129.如圖是二次函數(shù)y=ax1+bx+c(a≠0)圖象的一部分,對稱軸是直線x=﹣1.關(guān)于下列結(jié)論:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的兩個根為x1=0,x1=﹣4,其中正確的結(jié)論有()A.②③ B.②③④ C.②③⑤ D.②③④⑤10.如圖,△ABC的頂點都在方格紙的格點上,那么的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是______.12.比較大?。篲_______.(填“,或”)13.拋物線的頂點坐標(biāo)是______.14.如圖,四邊形的兩條對角線、相交所成的銳角為,當(dāng)時,四邊形的面積的最大值是______.15.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.16.方程的解是________.17.一組數(shù)據(jù):2,3,4,2,4的方差是___.18.如圖,在菱形c中,分別是邊,對角線與邊上的動點,連接,若,則的最小值是___.三、解答題(共66分)19.(10分)將一塊面積為的矩形菜地的長減少,它就變成了正方形,求原菜地的長.20.(6分)如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.(1)求證:四邊形AECF是矩形;(2)若AB=6,求菱形的面積.21.(6分)如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC.(1)求證:AC=BD;(2)若sinC=,BC=12,求△ABC的面積.22.(8分)如圖,在中,,是邊上的高,是邊上的一個動點(不與,重合),,,垂足分別為,.(1)求證:;(2)與是否垂直?若垂直,請給出證明,若不垂直,請說明理由.23.(8分)如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一點,且BD=CD,G是BC邊上的一動點,GE∥AD分別交直線AC,AB于F,E兩點.(1)AD=;(2)如圖1,當(dāng)GF=1時,求的值;(3)如圖2,隨點G位置的改變,F(xiàn)G+EG是否為一個定值?如果是,求出這個定值,如果不是,請說明理由.24.(8分)在一次社會大課堂的數(shù)學(xué)實踐活動中,王老師要求同學(xué)們測量教室窗戶邊框上的點C到地面的距離即CD的長,小英測量的步驟及測量的數(shù)據(jù)如下:(1)在地面上選定點A,B,使點A,B,D在同一條直線上,測量出、兩點間的距離為9米;(2)在教室窗戶邊框上的點C點處,分別測得點,的俯角∠ECA=35°,∠ECB=45°.請你根據(jù)以上數(shù)據(jù)計算出的長.(可能用到的參考數(shù)據(jù):sin35°≈0.57cos35°≈0.82tan35°≈0.70)25.(10分)如圖,四邊形是平行四邊形,分別是的平分線,且與對角線分別相交于點.(1)求證:;(2)連結(jié),判斷四邊形是否是平行四邊形,說明理由.26.(10分)如圖,在四邊形OABC中,BC∥AO,∠AOC=90°,點A(5,0),B(2,6),點D為AB上一點,且,雙曲線y1=(k1>0)在第一象限的圖象經(jīng)過點D,交BC于點E.(1)求雙曲線的解析式;(2)一次函數(shù)y2=k2x+b經(jīng)過D、E兩點,結(jié)合圖象,寫出不等式<k2x+b的解集.
參考答案一、選擇題(每小題3分,共30分)1、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據(jù)同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.2、C【分析】根據(jù)勾股定理求出a,然后根據(jù)正弦的定義計算即可.【詳解】解:根據(jù)勾股定理可得a=∴故選C.【點睛】此題考查的是勾股定理和求銳角三角函數(shù)值,掌握利用勾股定理解直角三角形和正弦的定義是解決此題的關(guān)鍵.3、C【分析】利用相似圖形的定義分別判斷后即可確定正確的選項.【詳解】解:A、菱形的對應(yīng)邊成比例,但對應(yīng)角不一定相等,故錯誤,不符合題意;
B、矩形的對應(yīng)角相等,但對應(yīng)邊不一定成比例,故錯誤,不符合題意;
C、等邊三角形的對應(yīng)邊成比例,對應(yīng)角相等,故正確,符合題意;
D、各邊對應(yīng)成比例的多邊形的對應(yīng)角不一定相等,故錯誤,不符合題意,
故選:C.【點睛】考查了相似圖形的定義,解題的關(guān)鍵是牢記相似多邊形的定義,難度較小.4、A【解析】試題分析:S△AEF=AE×AF=,S△DEG=DG×DE=×1×(3﹣x)=,S五邊形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG==,則y=4×()=,∵AE<AD,∴x<3,綜上可得:(0<x<3).故選A.考點:動點問題的函數(shù)圖象;動點型.5、A【分析】根據(jù)二次函數(shù)圖象“左移x加,右移x減,上移c加,下移c減”的規(guī)律即可知平移后的解析式,進(jìn)而可判斷最值.【詳解】將y=﹣(x+4)1+1的圖象向右平移1個單位,再向下平移3個單位,所得圖象的函數(shù)表達(dá)式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其頂點坐標(biāo)是(﹣1,﹣1),由于該函數(shù)圖象開口方向向下,所以,所得函數(shù)的最大值是﹣1.故選:A.【點睛】本題主要考查二次函數(shù)圖象的平移問題和最值問題,熟練掌握平移規(guī)律是解題關(guān)鍵.6、C【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應(yīng)數(shù)值代入即可求解.【詳解】解:第一次降價后的價格為36×(1﹣x),兩次連續(xù)降價后售價在第一次降價后的價格的基礎(chǔ)上降低x,為36×(1﹣x)×(1﹣x),則列出的方程是36×(1﹣x)2=1.故選:C.【點睛】考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.7、A【分析】拋物線平移不改變a的值.【詳解】原拋物線的頂點為(0,0),向左平移1個單位,再向上平移1個單位,那么新拋物線的頂點為(-1,1).可設(shè)新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.
故選:A.8、C【分析】根據(jù)題意,利用絕對值的意義求出m與n的值,再代入所求式子計算即可.【詳解】解:∵|m|=5,|n|=7,且m+n<0,∴m=5,n=﹣7;m=﹣5,n=﹣7,可得m﹣n=12或2,則m﹣n的值是12或2.故選:C.【點睛】本題考查了絕對值的意義,掌握絕對值的意義求值是關(guān)鍵.9、D【分析】根據(jù)二次函數(shù)的圖像與性質(zhì)即可得出答案.【詳解】由圖像可知,a<0,b<0,故①錯誤;∵圖像與x軸有兩個交點∴,故②正確;當(dāng)x=-3時,y=9a﹣3b+c,在x軸的上方∴y=9a﹣3b+c>0,故③正確;∵對稱軸∴b-4a=0,故④正確;由圖像可知,方程ax1+bx=0的兩個根為x1=0,x1=﹣4,故⑤正確;故答案選擇D.【點睛】本題考查的是二次函數(shù)的圖像與性質(zhì),難度系數(shù)中等,解題關(guān)鍵是根據(jù)圖像判斷出a,b和c的值或者取值范圍.10、D【分析】把∠A置于直角三角形中,進(jìn)而求得對邊與斜邊之比即可.【詳解】解:如圖所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故選D.【點睛】本題考查了銳角三角函數(shù)的定義;合理構(gòu)造直角三角形是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、且【解析】由關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,即可得判別式,繼而可求得a的范圍.【詳解】關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,,解得:,方程是一元二次方程,,的范圍是:且,故答案為:且.【點睛】本題考查了一元二次方程判別式以及一元二次方程的定義,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:(1)△>0方程有兩個不相等的實數(shù)根;(2)△=0方程有兩個相等的實數(shù)根;(3)△<0方程沒有實數(shù)根.12、<【分析】比較與的值即可.【詳解】∵,,,∴,故答案為:.【點睛】此題考查三角函數(shù)值,熟記特殊角度的三角函數(shù)值是解題的關(guān)鍵.13、(0,-3).【解析】試題解析:二次函數(shù),對稱軸當(dāng)時,頂點坐標(biāo)為:故答案為:14、【分析】設(shè)AC=x,根據(jù)四邊形的面積公式,,再根據(jù)得出,再利用二次函數(shù)最值求出答案.【詳解】解:∵AC、BD相交所成的銳角為∴根據(jù)四邊形的面積公式得出,設(shè)AC=x,則BD=8-x所以,∴當(dāng)x=4時,四邊形ABCD的面積取最大值故答案為:【點睛】本題考查的知識點主要是四邊形的面積公式,熟記公式是解題的關(guān)鍵.15、2【分析】直接利用非負(fù)數(shù)的性質(zhì)和特殊角的三角函數(shù)值求出∠A,∠B的度數(shù),進(jìn)而根據(jù)三角形內(nèi)角和定理得出答案.【詳解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案為:2.【點睛】本題考查了特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解答本題的關(guān)鍵.16、.【分析】方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到的值,經(jīng)檢驗得到分式方程的解.【詳解】去分母得:,解得:,經(jīng)檢驗是的根,所以,原方程的解是:.故答案是為:【點睛】本題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.17、0.1【分析】根據(jù)方差的求法計算即可.【詳解】平均數(shù)為,方差為:,故答案為:0.1.【點睛】本題主要考查方差,掌握方差的求法是解題的關(guān)鍵.18、【分析】作點Q關(guān)于BD對稱的對稱點Q’,連接PQ,根據(jù)兩平行線之間垂線段最短,即有當(dāng)E、P、Q’在同一直線上且時,的值最小,再利用菱形的面積公式,求出的最小值.【詳解】作點Q關(guān)于BD對稱的對稱點Q’,連接PQ.∵四邊形ABCD為菱形∴,∴當(dāng)E、P、Q’在同一直線上時,的值最小∵兩平行線之間垂線段最短∴當(dāng)時,的值最小∵∴,∴∵∴解得∴的最小值是.故答案為:.【點睛】本題考查了菱形的綜合應(yīng)用題,掌握菱形的面積公式以及兩平行線之間垂線段最短是解題的關(guān)鍵.三、解答題(共66分)19、原菜地長為.【分析】設(shè)原菜地的長為,根據(jù)正方形的性質(zhì)可得原矩形菜地的寬,再根據(jù)矩形的面積公式列出方程求解即可.【詳解】設(shè)原菜地的長為,則原矩形菜地的寬由題意得:解得:,(不合題意,舍去)答:原菜地的長為.【點睛】本題考查了一元二次方程的實際應(yīng)用,依據(jù)題意正確建立方程是解題關(guān)鍵.20、(1)證明見解析;(2)24【解析】試題分析:(1)首先證明△ABC是等邊三角形,進(jìn)而得出∠AEC=90°,四邊形AECF是平行四邊形,即可得出答案;(2)利用勾股定理得出AE的長,進(jìn)而求出菱形的面積.試題解析:(1)∵四邊形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等邊三角形,∵E是BC的中點,∴AE⊥BC,∴∠AEC=90°,∵E、F分別是BC、AD的中點,∴AF=AD,EC=BC,∵四邊形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四邊形AECF是平行四邊形,又∵∠AEC=90°,∴四邊形AECF是矩形;(2)在Rt△ABE中,AE=,所以,S菱形ABCD=6×3=18.考點:1.菱形的性質(zhì);2..矩形的判定.21、(1)證明見解析;(2)△ABC的面積為42.【分析】(1)在直角三角形中,表示,根據(jù)它們相等,即可得出結(jié)論(2)利用和勾股定理表示出線段長,根據(jù),求出長【詳解】(1)∵AD是BC上的高∴AD⊥BC.∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵=,=又已知∴=.∴AC=BD.(2)在Rt△ADC中,,故可設(shè)AD=1k,AC=13k.∴CD==5k.∵BC=BD+CD,又AC=BD,∴BC=13k+5k=12k由已知BC=1,∴12k=1.∴k=.∴AD=1k=1=2.22、(1)證明見解析;(2)與垂直,證明見解析.【分析】(1)由比例線段可知,我們需要證明△ADC∽△EGC,由兩個角對應(yīng)相等即可證得;
(2)由矩形的判定定理可知,四邊形AFEG為矩形,根據(jù)矩形的性質(zhì)及相似三角形的判定可得到△AFD∽△CGD,從而不難得到結(jié)論;【詳解】證明:(1)在和中,∵,,∴.∴.解:(2)與垂直.證明如下:在四邊形中,∵,∴四邊形為矩形.∴.,∴.又∵為直角三角形,,∴,∴.∴.∵,∴.即.∴.【點睛】本題主要考查了相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),同角的余角相等,判斷出△ADF≌△CDG是解本題的關(guān)鍵.23、(1)AD=;(2);(3)FG+EG是一個定值,為.【分析】(1)先由勾股定理求出BC的長,再由直角三角形斜邊中線的性質(zhì)可求出AD的長;(2)先證FG=CG=1,通過BD=CDBC=AD,求出BG的長,再證△BGE∽△BDA,利用相似三角形的性質(zhì)可求出的值;(3)由(2)知FG=CG,再證EG=BG,即可證FG+EG=BC=2.【詳解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案為:;(2)如圖1.∵GF∥AD,∴∠CFG=∠CAD.∵BD=CDBC=AD,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=21.∵AD∥GE,∴△BGE∽△BDA,∴;(3)如圖2,隨點G位置的改變,F(xiàn)G+EG是一個定值.理由如下:∵ADBC=BD,∴∠B=∠BAD.∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一個定值,為2.【點睛】本題考查了直角三角形的性質(zhì),相似三角形的判定與性質(zhì)等,解題的關(guān)鍵是能夠靈活運用相似三角形的判定與性質(zhì).24、CD的長為21米【解析】試題分析:首先分析圖形:本題涉及到兩個直角三角形△DBC、△ADC,設(shè)公共邊CD=x,利用銳角三角函數(shù)表示出AD和DB的長,借助AB=AD-DB=9構(gòu)造方程關(guān)系式,進(jìn)而可求出答案解:由題意可知:CD⊥AD于D,∠ECB=∠CBD=,∠ECA=∠CAD=,AB=9.設(shè),∵在中,∠CDB=90°,∠CBD=45°,∴CD=BD=.∵在中,∠CDA=90°,∠CAD=35°,∴,∴∵AB=9,AD=AB+BD,∴.解得答:CD的長為21米25、(1)見解析;(2)是平行四邊形;理由見解析.【分析】(1)根據(jù)角平分線的性質(zhì)先得出∠BEC=∠DFA,然后再證∠ACB=∠CAD,再證出△ABE≌△CDF,從而得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻修繕合同范本
- 知識產(chǎn)權(quán)保護(hù)從申請到執(zhí)行的全方位優(yōu)化
- 電子設(shè)計與生物醫(yī)學(xué)工程的結(jié)合應(yīng)用
- 物業(yè)花卉合同范本
- 廠地購買合同范本
- 2024年松滋市事業(yè)單位統(tǒng)一招聘考試真題
- 2024年清遠(yuǎn)英德市市區(qū)學(xué)校選調(diào)教師(編制)筆試真題
- 2024年廈門市集美實驗學(xué)校教師及產(chǎn)假頂崗教師招聘考試真題
- 2024年梅州蕉嶺縣招聘學(xué)科教師筆試真題
- 2024年平?jīng)鍪徐`臺縣城鎮(zhèn)公益性崗位人員招聘考試真題
- 三年級書法下冊《第9課 斜鉤和臥鉤》教學(xué)設(shè)計
- 兒童財商養(yǎng)成教育講座PPT
- 大學(xué)學(xué)院學(xué)生獎助資金及相關(guān)經(jīng)費發(fā)放管理暫行辦法
- 2022蘇教版科學(xué)五年級下冊全冊優(yōu)質(zhì)教案教學(xué)設(shè)計
- 加油員的安全生產(chǎn)責(zé)任制
- 2023年R2移動式壓力容器充裝操作證考試題及答案(完整版)
- 九年級物理實驗記錄單
- 2022年湖北省高中學(xué)業(yè)水平考試真題-音樂學(xué)科
- 提高屋面防水施工質(zhì)量年QC成果
- 部編初中語文古詩詞按作者分類梳理
- 博朗IRT6520中文說明書家用版
評論
0/150
提交評論