版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
文獻(xiàn)信息:文獻(xiàn)標(biāo)題:SeismicPerformanceofReinforcedConcreteBuildingswithMasonryInfill(砌體填充鋼筋混凝土建筑的抗震性能研究)文獻(xiàn)作者:GirmaZewdieTsige,AdilZekaria文獻(xiàn)出處:《AmericanJournalofCivilEngineering》,2018,6(1):24-33字?jǐn)?shù)統(tǒng)計(jì):英文3088單詞,16137字符;中文4799漢字外文文獻(xiàn):SeismicPerformanceofReinforcedConcreteBuildingswithMasonryInfillAbstractUnreinforcedmasonryInfillsmodifythebehaviorofframedstructuresunderlateralloads;however,inpractice,theinfillstiffnessiscommonlyignoredinframeanalysis,resultinginanunder-estimationofstiffnessandnaturalfrequency.ThestructuraleffectofhollowconcreteblockinfillisgenerallynotconsideredinthedesignofcolumnsaswellasotherstructuralcomponentsofRCframestructures.Thehollowconcreteblockwallshavesignificantin-planestiffnesscontributingtothestiffnessoftheframeagainstlateralload.Thescopeofpresentworkwastostudyseismicperformanceofreinforcedconcretebuildingswithmasonryinfillinmediumrisebuilding.Theofficemediumrisebuildingisanalyzedforearthquakeforcebyconsideringthreetypeofstructuralsystem.i.e.BareFramesystem,partially-infilledandfully-Infilledframesystem.Effectivenessofmasonrywallhasbeenstudiedwiththehelpoffivedifferentmodels.Infillsweremodeledusingtheequivalentstrutapproach.NonlinearstaticanalysesforlateralloadswereperformedbyusingstandardpackageETABS,2015software.Thecomparisonofthesemodelsfordifferentearthquakeresponseparameterslikebaseshearvsroofdisplacement,Storydisplacement,Storyshearandmemberforcesarecarriedout.Itisobservedthattheseismicdemandinthebareframeissignificantlylargewheninfillstiffnessisnotconsidered,withlargerdisplacements.Thiseffect,however,isnotfoundtobesignificantintheinfilledframesystems.Theresultsaredescribedindetailinthispaper.Keywords:BareFrame,InfilledFrame,EquivalentDiagonalStrut,Infill,PlasticHinge1.IntroductionInfillhavebeengenerallyconsideredasnon-structuralelements,althoughtherearecodessuchastheEurocode-8thatincluderatherdetailedproceduresfordesigninginfilledR/Cframes,presenceofinfillhasbeenignoredinmostofthecurrentseismiccodesexcepttheirweight.However,eventhoughtheyareconsiderednon-structuralelementsthepresenceofinfillinthereinforcedconcreteframescansubstantiallychangetheseismicresponseofbuildingsincertaincasesproducingundesirableeffects(tensionaleffects,dangerouscollapsemechanisms,softstory,variationsinthevibrationperiod,etc.)orfavorableeffectsofincreasingtheseismicresistancecapacityofthebuilding.Thepresentpracticeofstructuralanalysisisalsototreatthemasonryinfillasnon-structuralelementandtheanalysisaswellasdesigniscarriedoutbyonlyusingthemassbutneglectingthestrengthandstiffnesscontributionofinfill.Therefore,theentirelateralloadisassumedtoberesistedbytheframeonly.Contrarytocommonpractice,thepresenceofmasonryinfillinfluencetheover-allbehaviorofstructureswhensubjectedtolateralforces.Whenmasonryinfillareconsideredtointeractwiththeirsurroundingframes,thelateralstiffnessandthelateralloadcapacityofthestructurelargelyincrease.Therecentadventofstructuraldesignforaparticularlevelofearthquakeperformance,suchasimmediatepost-earthquakeoccupancy,(termedperformancebasedearthquakeengineering),hasresultedinguidelinessuchasATC-40(1996)FEMA-273(1996)andFEMA-356(2000)andstandardssuchasASCE-41(2006),amongothers.Thedifferenttypesofanalysesdescribedinthesedocuments,pushoveranalysiscomesforwardbecauseofitsoptimalaccuracy,efficiencyandeaseofuse.Theinfillmaybeintegralornon-integraldependingontheconnectivityoftheinfilltotheframe.Inthecaseofbuildingsunderconsideration,integralconnectionisassumed.Thecompositebehaviorofaninfilledframeimpartslateralstiffnessandstrengthtothebuilding.ThetypicalbehaviorofaninfilledframesubjectedtolateralloadisillustratedinFigures1(a)and(b).Figure1.Behaviorofinfilledframes(Govindan,1986).InthispresentpaperfivemodelsofofficebuildingwithdifferentconfigurationofmasonryinfillaregeneratedwiththehelpofETABS2015andeffectivenesshasbeenchecked.Pushoveranalysisisadoptedfortheevaluationoftheseismicresponseoftheframes.EachframeissubjectedtopushoverloadingcasealongnegativeX-direction.2.BuildingDescriptionMulti-storeyrigidjointedframemixedusebuildingG+9(Figure2),wasselectedintheseismiczone(ZoneIV)ofEthiopiaanddesignedbasedontheEthiopianBuildingCodeStandardESEN:2015andEuropeanCode-2005.ETABS2015wasusedfortheanalysisanddesignofthebuildingbymodelingasa3-Dspaceframesystem.Figure2.Typicalbuildingplan.SeismicperformanceispredictedbyusingperformancebasedanalysisofsimulationmodelsofbareandinfillednonductileRCframebuildingswithdifferentarrangementofmasonrywall.Thestructurewillbeassumedtobenew,withnoexistinginfilldamage.BuildingData:1.Typeofstructure=Multi-storeyrigidjointedframe2.Layout=asshowninfigure23.Zone=Iv4.ImportanceFactor=15.SoilCondition=hard6.Numberofstories=Ten(G+9)7.HeightofBuilding=30m8.Floortofloorheight=3m9.Externalwallthickness=20cm10.Internalwallthickness=15cm11.Depthofthefloorslab=15cm12.depthofroofslab=12cm13.Sizeofallcolumns=70×70cm14.Sizeofallbeams=70×40cm15.Dooropeningsize=100×200cm16.Windowopeningsize=200×120cm3.StructuralModelingandAnalysisTounderstandtheeffectofmasonrywallinreinforcedconcreteframe,withatotaloffivemodelsaredevelopedandpushoveranalysishasbeenmadeinstandardcomputerprogramETABS2015.InthisparticularstudypushoverloadingcasealongnegativeX-axisisconsideredtostudyseismicperformanceofallmodels.Sincetheoutofplaneeffectisnotstudiedinthispaper,onlytheequivalentstrutalongX-axisareconsideredtostudytheinplaneeffectandmasonrywallsalongY-axisarenotconsideredinallmodels.Fromthisdifferentcondition,allmodelsareidentifiedbytheirnameswhicharegivenbelow.3.1.DifferentArrangementoftheBuildingModelsTounderstandtheeffectofmasonrywallinreinforcedconcreteframe,withatotaloffivemodelsaredevelopedandpushoveranalysishasbeenmadeinstandardcomputerprogramETABS2015.InthisparticularstudypushoverloadingcasealongnegativeX-axisisconsideredtostudyseismicperformanceofallmodels.Model1:-Barereinforcedconcreteframe:masonryinfillwallsareremovedfromthebuildingalongallstoriesModel2:-Reinforcedconcreteframewith75%ofmasonrywallremovedfromfullyinfilledframeFigure3.PlanViewModel2.Model3:-ReinforcedconcreteframewithhalfofofmasonrywallremovedfromfullyinfilledframeFigure4.PlanViewofModel3.Model4:-Reinforcedconcreteframewith25%ofmasonrywallremovedfromfullyinfilledframeFigure5.PlanviewofModel4.Model5:-Fullyinfilledreinforcedconcreteframe(Baseframe)Figure6.PlanviewofModel5.3.2.ModelingofMasonryInfillInthecaseofaninfillwalllocatedinalateralloadresistingframethestiffnessandstrengthcontributionoftheinfillareconsideredbymodellingtheinfillasanequivalentcompressionstrut(Smith).Becauseofitssimplicity,severalinvestigatorshaverecommendedtheequivalentstrutconcept.Inthepresentanalysis,atrussedframemodelisconsidered.Thistypeofmodeldoesnotneglectthebendingmomentinbeamsandcolumns.Rigidjointsconnectthebeamsandcolumns,butpinjointsatthebeam-to-columnJunctionsconnecttheequivalentstruts.Infillparameters(effectivewidth,elasticmodulusandstrength)arecalculatedusingthemethodrecommendedbySmith.ThelengthofthestrutisgivenbythediagonaldistanceDofthepanel(Figure7)anditsthicknessisgivenbythethicknessoftheinfillwall.Theestimationofwidthwofthestrutisgivenbelow.TheinitialelasticmodulusofthestrutEiisequatedtoEmtheelasticmodulusofmasonry.AsperUBC(1997),Emisgivenas750fm,wherefmisthecompressivestressofmasonryinMPa.Theeffectivewidthwasfoundtodependontherelativestiffnessoftheinfilltotheframe,themagnitudeofthediagonalloadandtheaspectratiooftheinfilledpanel.Figure7.Strutgeometry(GhassanAl-Chaar).Theequivalentstrutwidth,a,dependsontherelativeflexuralstiffnessoftheinfilltothatofthecolumnsoftheconfiningframe.Therelativeinfilltoframestiffnessshallbeevaluatedusingequation1(Stafford-SmithandCarter1969):Usingthisexpression,Mainstone(1971)considerstherelativeinfilltoframeflexibilityintheevaluationoftheequivalentstrutwidthofthepanelasshowninequation2.Where:λ1=Relatireinfilltoframestiffnessgarameterα=Equivalentwidthofinfillstrut,cmEm=modulusofelasticityofmasonryinfill,MPaEc=modulusofelasticityofconfiningframe,MPaIcolumn=momentofinertiaofmasonryinfill,cm4t=Grossthicknessoftheinfill,cmh=heightoftheinfillpanel,cmθ=Angleoftheconcentricequivalentstrut,radiansD=Diagonallengthofinfill,cmH=Heightoftheconfiningframe,cm3.3.EccentricityofEquivalentStrutTheequivalentmasonrystrutistobeconnectedtotheframemembersasdepictedinFigure8.Theinfillforcesareassumedtobemainlyresistedbythecolumns,andthestrutsareplacedaccordingly.Thestrutshouldbepin-connectedtothecolumnatadistancelcolumnfromthefaceofthebeam.ThisdistanceisdefinedinEquations3and4andiscalculatedusingthestrutwidth,a.Figure8.Placementofstrut(GhassanAl-Chaar).3.4.PlasticHingePlacementPlastichingesincolumnsshouldcapturetheinteractionbetweenaxialloadandmomentcapacity.Thesehingesshouldbelocatedataminimumdistancelcolumnfromthefaceofthebeamasshowninfigure9.Hingesinbeamsneedonlycharacterizetheflexuralbehaviorofthemember.Figure9.Plastichingeplacement(GhassanAl-Chaar).3.5.AnalysisoftheBuildingModelsThenon-structuralelementsandcomponentsthatdonotsignificantlyinfluencethebuildingbehaviorwerenotmodeled.Thefloorslabsareassumedtoactasdiaphragms,whichensureintegralactionofalltheverticallateralload-resistingelements.Beamsandcolumnsweremodeledasframeelementswiththecenterlinesjoinedatnodes.Rigidoffsetswereprovidedfromthenodestothefacesofthecolumnsorbeams.Thestiffnessforcolumnsandbeamsweretakenas0.7EcIg,0.35EcIgrespectivelyaccountingforthecrackinginthemembersandthecontributionofflangesinthebeams.TheweightoftheslabwasdistributedtothesurroundingbeamsasperESEN1992:2015.ThemassoftheslabwaslumpedattheCentreofmasslocationateachfloorlevel.Thiswaslocatedatthedesigneccentricityfromthecalculatedcentreofstiffness.DesignlateralforcesateachstoreylevelwereappliedattheCentreofmasslocationsindependentlyintwohorizontaldirections(X-andY-directions).Staircasesandwatertankswerenotmodeledfortheirstiffnessbuttheirmasseswereconsideredinthestaticanddynamicanalyses.ThedesignspectrumforhardsoilasspecifiedinESEN1998:2015wasusedfortheanalysis.Theeffectofsoil-structureinteractionwasignoredintheanalyses.Thecolumnswereassumedtobefixedatthelevelofthebottomofthebaseslabsofrespectiveisolatedfootings.Figure10.Force-DeformationRelationforPlasticHingeinPushoverAnalysis(Habibullah.etal.,1998).4.AnalysisResultsandDiscussionsTheresultsofpushoveranalysisofreinforcedconcreteframewithdifferentconfigurationofmasonrywallarepresented.AnalysisofthemodelsunderthestaticanddynamicloadshasbeenperformedusingEtabs2015software.AllrequireddataareprovidedinsoftwareandanalyzedfortotalfivemodelstogettheresultintermsofBaseshearvsmonitoredroofdisplacement,Storeyshear,storydisplacementandElementforce.Subsequentlytheseresultsarecomparedforreinforcedconcreteframewithdifferentconfigurationofmasonrywall.4.1.BaseShearvsMonitoredRoofDisplacementCurveBasedupontheDisplacementcoefficientmethodofASCE41-13allthefivebuildingmodelsareanalyzedinETABS2015standardstructuralsoftwareandthestaticpushovercurveisgeneratedasshowninfigure11.Figure11.Pushoveranalysisresultfor10-storyRCbuilding.Thepresenceoftheinfillwallbothstrengthensandstiffensthesystem,asillustratedinfigure11.Forthecasestudybuilding,thefully-infilledframehasapproximately3timeslargerintialstiffnessand1.5timesgreaterpeakstrengththanthebareframe.Infigure11,thefirstdropinstrengthforthefullyandpartially-infilledframeisduetothebrittlefailureofmasonrymaterialsinitiatinginthefirst-storyinfillwalls.Thisbehaviorafterfirst-storywallfailureisduetowall-frameinteractionanddependsontherelativestrengthoftheinfillandframing.So,basedontheseresults,infillwallscanbebeneficialaslongastheyareproperlytakenintoconsiderationinthedesignprocessandthefailuremechanismiscontrolled.4.2.StoryDisplacementforDifferentModelsFigure12.showsthecomparativestudyofseismicdemandintermsoflateralstorydisplacementamongstallthefivetypesofreinforcedconcreteframewithdifferentconfigurationofinfill.Thelateraldisplacementobtainedfromthebareframemodelisthemaximumwhichisabout60%greaterthanthatoffullyinfilledframe,nearly50%greaterthanthatofframewith25%ofthemasonrywallreduced,about40%greaterthanthatofframewith50%ofthemasonrywallreducedand30%greaterthanthatofframewith75%ofthemasonrywallreduced.Figure12.ComparisonofStorydisplacementsfordifferentmodels.Thus,theinfillpanelreducestheseismicdemandofreinforcedconcretebuildings.Thelateralstorydisplacementisdramaticallyreducedduetointroductionofinfill.Thisprobablyisthecauseofbuildingdesignedinconventionalwaybehavingnearelasticallyevenduringstrongearthquake.4.3.MemberForcesInthisprojecttounderstandtheeffectofdifferentconfigurationofinfillinreinforcedconcreteframe;studyofthebehaviorofthecolumninallmodelsforaxialloadswasconducted.TotaloffivenonlinearmodelsareanalyzedinETABS2015andallmodelshavesameplanofbuilding,thereforethepositionandlabelofcolumnsaresameinallplansofmodelswhichisshowninfigure2.Afteranalysisconsiderthecolumnno.1(C1)showninfigure2.fromallmodelsforpushoverloadcaseandgettheaxialforcesofcolumnatperformancepointateverystoryfromsoftware,whichisgivenintable1andthevaluesforeachmodeliscomparedwiththebareframemodel.Table1.Comparisonofaxialforcefordifferentmodels.(KN)Fromthisobservation,itisevidentthatwhenaninfilledframeisloadedlaterally,thecolumnstakethemajorityoftheforceandshearforceexertedontheframebytheinfillwhichismodeledastheeccentricequivalentstruts.Generally,therelativeincreaseofaxialforceisobservedwhenthepercentageofinfillinreinforcedconcreteframeincreases.Itisobservedthatfullyinfilledreinforcedconcreteframeshowedaround10%increaseinaxialforcerelativetobareframemodel.Theotherinfillmodelsshowedalesserincrease.Theeffectofinfilloncolumnsistoincreasetheshearforceandtoreducebendingmoments.Ingeneralcomparedtobareframemodel,theinfilledmodelspredictedhigheraxialandshearforcesincolumnsbutlowerbendingmomentsinbothbeamsandcolumns.Thus,theeffectofinfillpanelistochangethepredominantlyaframeactionofamomentresistingframesystemtowardstrussaction.4.4.StoryShearStoryshearisthetotalhorizontalseismicshearforceatthebaseofstructure.Resultsfromstaticpushoveranalysisatperformancepointforthecasestudybuildingsareshowninfigure13.Figure13.Comparisonofstoryshearfordifferentmodel.Asobservedfromthefigure13thestoryshearcalculatedonthebasisofbareframemodelgavealesservaluethantheotherinfilledframes;Itwasobservedthatthestoryshearinfullyinfilledframeisnearly15%greatercomparedtobareframemodelandframewith25%ofthemasonrywallreducedwasnearly10%greatercomparedtothebareframe,framewith50%ofthemasonrywallreducedisnearly8%greatercomparedtothebareframeandframewith75%ofthemasonrywallreducedisabout5%greatercomparedtothebareframe.Sincethebareframemodelsdonottakeintoaccountthestiffnessrenderedbytheinfillpanel,itgivessignificantlylongertimeperiod.Andhencesmallerlateralforces.Andwhentheinfillismodeled,thestructurebecomesmuchstifferthanthebareframemodel.Therefore,ithasbeenfoundthatcalculationofearthquakeforcesbytreatingRCframesasordinaryframeswithoutregardstoinfillleadstounderestimationofbaseshear.Thisisbecauseofbareframeishavinglargervalueoffundamentalnaturaltimeperiodascomparedtoothermodelsduetoabsenceofmasonryinfillwalls.Fundamentalnaturalperiodgetincreasedandthereforebasesheargetreduced.5.ConclusionsFromaboveresultsitisclearthatpushovercurveshowanincreaseininitialstiffness,strength,andenergydissipationoftheinfilledframe,comparedtothebareframe,despitethewall’sbrittlefailuremodes.Duetotheintroductionofinfillthedisplacementcapacitydecreasesasdepictedfromthedisplacementprofile(Figure12).Thelateraldisplacementobtainedfromthebareframemodelisthemaximumwhichisabout60%greaterthanthatofinfilledframe.Thepresenceofmasonrywallsistochangeaframeactionofamomentresistingframestructuretowardsatrussaction.Wheninfillsarepresent,shearandaxialforcedemandsareconsiderablyhigherleavingthebeamorcolumnvulnerabletoshearfailure.Theaxialforceandshearforceofthebareframeislessthanthatoftheinfilledframe.Columnstakethemajorityoftheforcesexertedontheframebytheinfillbecausetheeccentricallymodeledequivalentstrutstransferstheaxialloadandshearforcetransferredfromtheactionoflateralloadsdirectlytothecolumns.Thestoryshearcalculatedonthebasisofbareframemodelgavealesservaluethantheotherinfilledframes.Itwasobservedthatfullyinfilledframeisnearly15%greatercomparedtobareframemodel;framewith25%ofthemasonrywallreducedwasnearly10%greatercomparedtothebareframe;framewith50%ofthemasonrywallreducedisnearly8%greatercomparedtothebareframeandframewith75%ofthemasonrywallreducedisabout5%greatercomparedtothebareframe.Thisisbecausethebareframemodelsdonottakesintoaccountthestiffnessrenderedbytheinfillpanel,itgivessignificantlylongertimeperiod.中文譯文:砌體填充鋼筋混凝土建筑的抗震性能研究摘要無配筋砌體填充對(duì)框架結(jié)構(gòu)在側(cè)向荷載作用下的受力性能有很大的影響,但在實(shí)際應(yīng)用中,往往忽略了框架結(jié)構(gòu)的填充剛度,導(dǎo)致對(duì)框架結(jié)構(gòu)的剛度和固有頻率的估計(jì)不足。在鋼筋混凝土框架結(jié)構(gòu)的柱體設(shè)計(jì)及其他結(jié)構(gòu)構(gòu)件的設(shè)計(jì)中,一般不考慮空心砌塊填充的結(jié)構(gòu)效應(yīng)。空心混凝土砌塊墻具有顯著的平面內(nèi)剛度,對(duì)框架抗側(cè)向荷載的剛度起著重要的作用。本研究的工作范圍是研究中高層建筑砌體填充鋼筋混凝土結(jié)構(gòu)的抗震性能。通過考慮三種結(jié)構(gòu)體系,即裸框架體系、部分填充框架體系和全填充框架體系,對(duì)辦公中高層建筑進(jìn)行了地震力分析。采用五種不同的模型對(duì)砌體墻的有效性進(jìn)行了研究。填充物采用等效撐桿法建模。采用ETABS2015標(biāo)準(zhǔn)軟件包對(duì)側(cè)向荷載進(jìn)行了非線性靜力分析。對(duì)不同的地震反應(yīng)參數(shù),如基底剪力與頂層位移、層間位移、層剪力和構(gòu)件內(nèi)力等進(jìn)行了比較。結(jié)果表明,在不考慮填充剛度、位移較大的情況下,裸框架結(jié)構(gòu)的抗震需求明顯增大。然而,這種效應(yīng)在填充框架系統(tǒng)中并不顯著。文中對(duì)結(jié)果進(jìn)行了詳細(xì)的描述。關(guān)鍵詞:裸框架,填充框架,等效斜撐,填充,塑性鉸
1.簡介填充物通常被認(rèn)為是非結(jié)構(gòu)構(gòu)件,雖然有諸如歐洲規(guī)范Eurocode8這樣的規(guī)范,其中包含了設(shè)計(jì)填充鋼筋混凝土框架的相當(dāng)詳細(xì)的程序,但在目前的大多數(shù)抗震規(guī)范中,填充物的存在被忽略了,除了它們的重量。然而,即使它們被認(rèn)為是非結(jié)構(gòu)構(gòu)件,但在某些情況下,鋼筋混凝土框架中填充物的存在會(huì)在很大程度上改變建筑物產(chǎn)生不良影響的地震反應(yīng)(張拉效應(yīng)、危險(xiǎn)的倒塌機(jī)制、柔性底層、振動(dòng)周期的變化等),或增加建筑物抗震能力的有利影響。目前的結(jié)構(gòu)分析方法也是將砌體填充物視為非結(jié)構(gòu)構(gòu)件,分析和設(shè)計(jì)時(shí)只考慮填充物的質(zhì)量,而忽略了填充物的強(qiáng)度和剛度貢獻(xiàn)。因此,假定整個(gè)側(cè)向荷載僅由框架抵抗。與通常的做法相反,砌體填充物的存在會(huì)影響結(jié)構(gòu)在承受側(cè)向力時(shí)的整體性能。當(dāng)考慮砌體填充物與周圍框架相互作用時(shí),結(jié)構(gòu)的側(cè)向剛度和側(cè)向承載能力大大增加。最近出現(xiàn)的針對(duì)特定級(jí)別地震性能的結(jié)構(gòu)設(shè)計(jì),如地震后立即入?。ǚQ為基于性能的地震工程),產(chǎn)生了諸如ATC-40(1996)、FEMA-273(1996)和FEMA-356(2000)等指導(dǎo)方針,以及諸如ASCE-41(2006)等標(biāo)準(zhǔn)。在這些文件中描述的不同類型的分析,采用了靜力彈塑性分析,因?yàn)樗哂凶罴训臏?zhǔn)確性、效率和易用性。填充物可以是整體的,也可以是非整體的,這取決于填充物與框架的連接性。在考慮建筑物的情況下,假設(shè)是整體連接。填充框架的綜合性能賦予建筑物側(cè)向剛度和強(qiáng)度。圖1(a)和(b)說明了填充框架在側(cè)向荷載下的典型行為。圖1.填充框架的行為(GovdIn,1986)本文利用ETABS2015軟件生成了五種不同砌體填充結(jié)構(gòu)的辦公建筑模型,并對(duì)其有效性進(jìn)行了檢驗(yàn)。靜力彈塑性分析被用于評(píng)估框架的地震反應(yīng)。每個(gè)框架沿負(fù)X方向承受推覆載荷情況。2.建筑描述在埃塞俄比亞地震區(qū)(IV區(qū))中選擇了多層剛性連接框架混合建筑G+9(圖2),并根據(jù)埃塞俄比亞建筑法規(guī)標(biāo)準(zhǔn)ESEN:2015和歐洲規(guī)范CODE-2005進(jìn)行了設(shè)計(jì)。將ETABS2015作為一個(gè)三維空間框架系統(tǒng)建模,對(duì)該建筑進(jìn)行了分析和設(shè)計(jì)。圖2.典型的建筑平面圖采用基于性能的分析方法,對(duì)不同砌體墻布局的裸鋼筋混凝土框架和填充非延性鋼筋混凝土框架結(jié)構(gòu)的抗震性能進(jìn)行了預(yù)測(cè)。該結(jié)構(gòu)將被假定為新的,沒有現(xiàn)有的填充損壞。建筑數(shù)據(jù):1.結(jié)構(gòu)類型=多層剛性連接框架2.布局=如圖2所示3.地帶=Iv4.重要性系數(shù)=15.土壤條件=堅(jiān)硬6.樓層數(shù)=10(G+9)7.建筑高度=30m8.樓層高度=3m9.外壁厚度=20cm10.內(nèi)壁厚度=15cm11.樓板深度=15cm12.屋面板深度=12cm13.所有柱的尺寸=70×70cm14.所有梁的尺寸=70×40cm15.門孔尺寸=100×200cm16.開窗尺寸=200×120cm3.結(jié)構(gòu)建模與分析為了解砌體墻在鋼筋混凝土框架中的作用,開發(fā)了五種模型,并在標(biāo)準(zhǔn)計(jì)算機(jī)程序ETABS2015中進(jìn)行了靜力彈塑性分析。在本文的研究中,考慮了負(fù)X軸的推覆荷載情況,對(duì)所有模型的抗震性能進(jìn)行了研究。由于本文不研究平面外效應(yīng),所以只考慮沿X軸的等效撐桿來研究平面內(nèi)效應(yīng),并且在所有模型中都不考慮沿Y軸的砌體墻。從這個(gè)不同的條件來看,所有的模型都由它們的名字來標(biāo)識(shí)的,如下所示。3.1.建筑模型的不同布局為了解砌體墻在鋼筋混凝土框架中的作用,開發(fā)了五種模型,并在標(biāo)準(zhǔn)計(jì)算機(jī)程序ETABS2015中進(jìn)行了靜力彈塑性分析。在本文的研究中,考慮了負(fù)X軸的推覆荷載情況,對(duì)所有模型的抗震性能進(jìn)行了研究。模型1——裸鋼筋混凝土框架,砌體填充墻沿著所有樓層從建筑物中移走模型2——鋼筋混凝土框架,75%的磚墻從完全填充的框架中移除圖3.平面圖模型2模型3——鋼筋混凝土框架,一半的磚墻從完全填充的框架中移除圖4.平面圖模型3模型4——鋼筋混凝土框架,25%的磚墻從完全填充的框架中移除圖5.平面圖模型4模型5——全填充鋼筋混凝土框架(基礎(chǔ)框架)圖6.平面圖模型53.2.砌體填充建模對(duì)于位于抗側(cè)力框架內(nèi)的填充墻,通過將填充物建模為等效撐桿來考慮填充物的剛度和強(qiáng)度貢獻(xiàn)(Smith)。由于它的簡單性,一些研究者推薦了等效撐桿概念。在本文的分析中,考慮了桁架模型。這種模型沒有忽略梁和柱的彎矩。剛性節(jié)點(diǎn)連接梁和柱,但梁柱連接處的銷接頭連接等效撐桿。填充參數(shù)(有效寬度、彈性模量和強(qiáng)度)采用Smith推薦的方法計(jì)算。支柱的長度由面板的對(duì)角線距離D給出(圖7),其厚度由填充墻的厚度給出。下面給出了支柱的寬度w的估計(jì)。支柱Ei的初始彈性模量等于Em砌體的彈性模量。根據(jù)UBC(1997),Em給出為750fm,其中fm是砌體在MPa中的壓縮應(yīng)力。計(jì)算結(jié)果表明,填充物的有效寬度取決于填充物與框架的相對(duì)剛度、斜向載荷的大小和填充板的縱橫比。圖7.支柱幾何結(jié)構(gòu)(GhassanAl-Chaar)等效撐桿寬度α取決于填充物相對(duì)于約束框架柱的抗彎剛度。對(duì)框架剛度的相對(duì)填充應(yīng)使用方程式1進(jìn)行評(píng)估(Stafford-Smith和Carter,1969):利用這個(gè)表達(dá)式,Mainstone(1971)在計(jì)算面板的等效撐桿寬度時(shí)考慮了對(duì)框架的靈活性的相對(duì)填充,如方程2所示。其中,λ1=相對(duì)填充與框架剛度參數(shù)α=填充撐桿的等效寬度,cmEm=砌體填充的彈性模量,MPaEc=約束框架的彈性模量,MPalcolumn=砌體填充慣性矩,cm4t=填充物的總厚度,cmh=填充板的高度,cmθ=同心等效撐桿的角度,radiansD=填充物的對(duì)角線長度,cmH=約束框架的高度,cm3.3.等效撐桿的偏心率如圖8所示,等效的砌體撐桿與框架構(gòu)件連接。假定填充力主要由支柱抵抗,并相應(yīng)地放置撐桿。撐桿應(yīng)與支柱在距梁面一段距離的lcolumn處用銷連接。這個(gè)距離在方程3和4中定義,并使
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版石油化工安全評(píng)價(jià)與隱患排查合同3篇
- 二零二五年度品牌推廣活動(dòng)策劃與執(zhí)行合同3篇
- 二零二五版工藝品展覽館建設(shè)與運(yùn)營管理合同3篇
- 二零二五年度電力工程建設(shè)項(xiàng)目融資合同2篇
- 二零二五年度4S店汽車租賃與綠色出行倡導(dǎo)合同3篇
- 二零二五版房地產(chǎn)開發(fā)項(xiàng)目掛靠合作保密協(xié)議合同3篇
- 2025年度特色餐飲品牌店面全面轉(zhuǎn)讓合同范本2篇
- 二零二五版物業(yè)公司應(yīng)急處理合同3篇
- 二零二五版數(shù)據(jù)中心建設(shè)工程施工合同2篇
- 基于2025年度區(qū)塊鏈技術(shù)的電子勞動(dòng)合同信任機(jī)制合同3篇
- 高二物理競賽霍爾效應(yīng) 課件
- 金融數(shù)學(xué)-(南京大學(xué))
- 基于核心素養(yǎng)下的英語寫作能力的培養(yǎng)策略
- 現(xiàn)場安全文明施工考核評(píng)分表
- 亞什蘭版膠衣操作指南
- 四年級(jí)上冊(cè)數(shù)學(xué)教案 6.1口算除法 人教版
- DB32-T 3129-2016適合機(jī)械化作業(yè)的單體鋼架塑料大棚 技術(shù)規(guī)范-(高清現(xiàn)行)
- 6.農(nóng)業(yè)產(chǎn)值與增加值核算統(tǒng)計(jì)報(bào)表制度(2020年)
- 人工挖孔樁施工監(jiān)測(cè)監(jiān)控措施
- 供應(yīng)商物料質(zhì)量問題賠償協(xié)議(終端)
- 物理人教版(2019)必修第二冊(cè)5.2運(yùn)動(dòng)的合成與分解(共19張ppt)
評(píng)論
0/150
提交評(píng)論