2023-2024學年山東青島城陽區(qū)五校聯(lián)考中考數(shù)學模擬預測題含解析_第1頁
2023-2024學年山東青島城陽區(qū)五校聯(lián)考中考數(shù)學模擬預測題含解析_第2頁
2023-2024學年山東青島城陽區(qū)五校聯(lián)考中考數(shù)學模擬預測題含解析_第3頁
2023-2024學年山東青島城陽區(qū)五校聯(lián)考中考數(shù)學模擬預測題含解析_第4頁
2023-2024學年山東青島城陽區(qū)五校聯(lián)考中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山東青島城陽區(qū)五校聯(lián)考中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列四個命題中,真命題是()A.相等的圓心角所對的兩條弦相等B.圓既是中心對稱圖形也是軸對稱圖形C.平分弦的直徑一定垂直于這條弦D.相切兩圓的圓心距等于這兩圓的半徑之和2.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.3.如圖,將△ABC繞點C順時針旋轉,使點B落在AB邊上點B′處,此時,點A的對應點A′恰好落在BC邊的延長線上,下列結論錯誤的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′4.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數(shù)為()A.40° B.36° C.50° D.45°5.小明同學在學習了全等三角形的相關知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確6.如圖,AB為⊙O的直徑,C為⊙O上的一動點(不與A、B重合),CD⊥AB于D,∠OCD的平分線交⊙O于P,則當C在⊙O上運動時,點P的位置()

A.隨點C的運動而變化B.不變C.在使PA=OA的劣弧上D.無法確定7.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(

).A. B.- C.- D.8.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.9.某工廠計劃生產(chǎn)210個零件,由于采用新技術,實際每天生產(chǎn)零件的數(shù)量是原計劃的1.5倍,因此提前5天完成任務.設原計劃每天生產(chǎn)零件個,依題意列方程為()A. B.C. D.10.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°11.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同?,F(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.12.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一組數(shù)據(jù)1,4,4,3,4,3,4的眾數(shù)是_____.14.如圖,AC、BD為圓O的兩條垂直的直徑,動點P從圓心O出發(fā),沿線段OC-A.B.C.D.15.已知式子有意義,則x的取值范圍是_____16.(題文)如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是_____.17.分解因式6xy2-9x2y-y3=_____________.18.如圖,將△AOB繞點O按逆時針方向旋轉45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在邊長為1個單位長度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.20.(6分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.21.(6分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.求反比例函數(shù)的解析式;若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.22.(8分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.23.(8分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:請將以上兩幅統(tǒng)計圖補充完整;若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有_▲人達標;若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?24.(10分)Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.(1)如圖①,求∠ODE的大??;(2)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大?。?5.(10分)已知關于x,y的二元一次方程組的解為,求a、b的值.26.(12分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:求參與問卷調(diào)查的總人數(shù).補全條形統(tǒng)計圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).27.(12分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:A.在同圓或等圓中,相等的圓心角所對的兩條弦相等,故A項錯誤;B.圓既是中心對稱圖形也是軸對稱圖形,正確;C.平分弦(不是直徑)的直徑一定垂直于這條弦,故C選項錯誤;D.外切兩圓的圓心距等于這兩圓的半徑之和,故選項D錯誤.故選B.2、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.3、C【解析】

根據(jù)旋轉的性質求解即可.【詳解】解:根據(jù)旋轉的性質,A:∠與∠均為旋轉角,故∠=∠,故A正確;B:,,又,,故B正確;D:,B′C平分∠BB′A′,故D正確.無法得出C中結論,故答案:C.【點睛】本題主要考查三角形旋轉后具有的性質,注意靈活運用各條件4、B【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.5、A【解析】

過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上),故選A.【點睛】本題主要考查了基本作圖,關鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.6、B【解析】

因為CP是∠OCD的平分線,所以∠DCP=∠OCP,所以∠DCP=∠OPC,則CD∥OP,所以弧AP等于弧BP,所以PA=PB.從而可得出答案.【詳解】解:連接OP,∵CP是∠OCD的平分線,∴∠DCP=∠OCP,

又∵OC=OP,

∴∠OCP=∠OPC,

∴∠DCP=∠OPC,

∴CD∥OP,

又∵CD⊥AB,

∴OP⊥AB,

∴,

∴PA=PB.

∴點P是線段AB垂直平分線和圓的交點,

∴當C在⊙O上運動時,點P不動.

故選:B.【點睛】本題考查了圓心角、弦、弧之間的關系,以及平行線的判定和性質,在同圓或等圓中,等弧對等弦.7、C【解析】分析:根據(jù)根與系數(shù)的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.8、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.9、A【解析】

設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,根據(jù)提前5天完成任務,列方程即可.【詳解】設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,由題意得,故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程即可.10、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.11、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.12、D【解析】

兩個同心圓被均分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,由此計算出黑色區(qū)域的面積,利用幾何概率的計算方法解答即可.【詳解】因為兩個同心圓等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中黑色區(qū)域的面積占了其中的四等份,所以P(飛鏢落在黑色區(qū)域)==.故答案選:D.【點睛】本題考查了幾何概率,解題的關鍵是熟練的掌握幾何概率的相關知識點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

本題考查了統(tǒng)計的有關知識,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故答案為1.【點睛】本題為統(tǒng)計題,考查了眾數(shù)的定義,是基礎題型.14、C.【解析】分析:根據(jù)動點P在OC上運動時,∠APB逐漸減小,當P在上運動時,∠APB不變,當P在DO上運動時,∠APB逐漸增大,即可得出答案.解答:解:當動點P在OC上運動時,∠APB逐漸減??;當P在上運動時,∠APB不變;當P在DO上運動時,∠APB逐漸增大.故選C.15、x≤1且x≠﹣1.【解析】根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.16、12【解析】根據(jù)題意觀察圖象可得BC=5,點P在AC上運動時,BP⊥AC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時BP=4,又勾股定理求得CP=3,因點P從點C運動到點A,根據(jù)函數(shù)的對稱性可得CP=AP=3,所以ΔABC的面積是117、-y(3x-y)2【解析】

先提公因式-y,然后再利用完全平方公式進行分解即可得.【詳解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案為:-y(3x-y)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握因式分解的方法及步驟是解題的關鍵.因式分解的一般步驟:一提(公因式),二套(套用公式),注意一定要分解到不能再分解為止.18、30°【解析】

根據(jù)旋轉的性質得到∠BOD=45°,再用∠BOD減去∠AOB即可.【詳解】∵將△AOB繞點O按逆時針方向旋轉45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)見解析(3)9【解析】試題分析:(1)將△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1,如圖所示;(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據(jù)題意畫出圖形,△A1B1C1為所求三角形;(2)根據(jù)題意畫出圖形,△A2B2C2為所求三角形.考點:1.作圖-位似變換,2.作圖-平移變換20、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設圓O的半徑為r,根據(jù)勾股定理列方程可得結論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設圓O的半徑為r,根據(jù)勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【點睛】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質,解答本題的關鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質.21、(1);(2)點P的坐標是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標,把M的坐標代入反比例函數(shù)的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標.【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標代入得:k=4,∴反比例函數(shù)的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點P的坐標是(0,4)或(0,-4).22、(1)見解析;(2)①;②cos∠AFE=【解析】

(1)用特殊值法,設,則,證,可求出CF,DF的長,即可求出結論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設CF=2,則CE=6,可設AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結論.【詳解】(1)設BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設CF=2,則CE=6,可設AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點睛】本題主要考查了三角形相似的判定及性質的綜合應用,熟練掌握三角形相似的判定及性質是解決本題的關鍵.23、(1)見解析;(2)1;(3)估計全校達標的學生有10人【解析】

(1)成績一般的學生占的百分比=1-成績優(yōu)秀的百分比-成績不合格的百分比,測試的學生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù).(2)將成績一般和優(yōu)秀的人數(shù)相加即可;(3)該校學生文明禮儀知識測試中成績達標的人數(shù)=1200×成績達標的學生所占的百分比.【詳解】解:(1)成績一般的學生占的百分比=1﹣20%﹣50%=30%,測試的學生總數(shù)=24÷20%=120人,成績優(yōu)秀的人數(shù)=120×50%=60人,所補充圖形如下所示:(2)該校被抽取的學生中達標的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計全校達標的學生有10人.24、(1)∠ODE=90°;(2)∠A=45°.【解析】分析:(Ⅰ)連接OE,BD,利用全等三角形的判定和性質解答即可;(Ⅱ)利用中位線的判定和定理解答即可.詳解:(Ⅰ)連接OE,BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠CDB=90°.∵E點是BC的中點,∴DE=BC=BE.∵OD=OB,OE=OE,∴△ODE≌△OBE,∴∠ODE=∠OBE.∵∠ABC=90°,∴∠ODE=90°;(Ⅱ)∵CF=OF,CE=EB,∴FE是△COB的中位線,∴FE∥OB,∴∠AOD=∠ODE,由(Ⅰ)得∠ODE=90°,∴∠AOD=90°.∵OA=OD,∴∠A=∠ADO=.點睛:本題考查了圓周角定理,關鍵是根據(jù)學生對全等三角形的判定方法及切線的判定等知識的掌握情況解答.25、或【解析】

把代入二元一次方程組得到關于a,b的方程組,經(jīng)過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,

由①得:a=1+b,

把a=1+b代入②,整理得:

b2+b-2=0,

解得:b=-2或b=1,

把b=-2代入①得:a+2=1,

解得:a=-1,

把b=1代入①得:

a-1=1,

解得:a=2,

即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.26、(1)參與問卷調(diào)查的總人數(shù)為500人;(2)補全條形統(tǒng)計圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】

(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調(diào)查的總人數(shù),即可求出結論;

(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調(diào)查的總人數(shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計圖補充完整即可得出結論;

(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結論.【詳解】(1)(人.答:參與問卷調(diào)查的總人數(shù)為500人.(2)(人.補全條形統(tǒng)計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,解題的關鍵是:(1)觀察統(tǒng)計圖找出數(shù)據(jù),再列式計算;(2)通過計算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總人數(shù),估算出喜歡微信支付方式的人數(shù).27、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論