版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年浙江省臺州市溫嶺市實驗校中考數(shù)學最后沖刺濃縮精華卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,反比例函數(shù)y=-4x的圖象與直線y=-1A.8B.6C.4D.22.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)3.已知直線m∥n,將一塊含30°角的直角三角板ABC,按如圖所示方式放置,其中A、B兩點分別落在直線m、n上,若∠1=25°,則∠2的度數(shù)是()A.25° B.30° C.35° D.55°4.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發(fā)現(xiàn)直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+25.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a6.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°7.如圖,直線y=kx+b與x軸交于點(﹣4,0),則y>0時,x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<08.某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線圖,則符合這一結(jié)果的實驗最有可能的是()A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”B.擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4C.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃D.拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上9.某班選舉班干部,全班有1名同學都有選舉權(quán)和被選舉權(quán),他們的編號分別為1,2,…,1.老師規(guī)定:同意某同學當選的記“1”,不同意(含棄權(quán))的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是()A.同意第1號或者第2號同學當選的人數(shù)B.同時同意第1號和第2號同學當選的人數(shù)C.不同意第1號或者第2號同學當選的人數(shù)D.不同意第1號和第2號同學當選的人數(shù)10.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.已知圓錐的底面半徑為3cm,側(cè)面積為15πcm2,則這個圓錐的側(cè)面展開圖的圓心角°.12.如圖,在梯形中,,,點、分別是邊、的中點.設(shè),,那么向量用向量表示是________.13.王英同學從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時王英同學離A地的距離是_____米.14.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.15.計算_______.16.設(shè)[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結(jié)論中正確的是______.(填寫所有正確結(jié)論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實數(shù)x,使[x)?x=0.5成立.三、解答題(共8題,共72分)17.(8分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.18.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當點E在邊BC上時,求證DE=EB;如圖2,當點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.19.(8分)圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)20.(8分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.21.(8分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.22.(10分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.23.(12分)由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產(chǎn)品.某公司經(jīng)銷一種空氣凈化器,每臺凈化器的成本價為200元.經(jīng)過一段時間的銷售發(fā)現(xiàn),每月的銷售量y(臺)與銷售單價x(元)的關(guān)系為y=﹣2x+1.(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數(shù)關(guān)系式;(2)若要使每月的利潤為40000元,銷售單價應定為多少元?(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?24.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經(jīng)》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:由于點A、B在反比例函數(shù)圖象上關(guān)于原點對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點:反比例函數(shù)系數(shù)k的幾何意義.2、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉(zhuǎn)的性質(zhì)得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉(zhuǎn),得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉(zhuǎn),等邊三角形的性質(zhì).求解時,注意等邊三角形三線合一的性質(zhì).3、C【解析】
根據(jù)平行線的性質(zhì)即可得到∠3的度數(shù),再根據(jù)三角形內(nèi)角和定理,即可得到結(jié)論.【詳解】解:∵直線m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故選C.【點睛】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.4、D【解析】
抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設(shè)所求直線解析式為y=kx+b,將兩位置D坐標代入得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設(shè)所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標與圖形性質(zhì),熟練運用待定系數(shù)法是解答本題的關(guān)鍵.5、B【解析】
先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.6、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定7、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當y<1時,x<-4,故選C.考點:本題考查的是一次函數(shù)的圖象點評:解答本題的關(guān)鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.8、B【解析】
根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.17附近波動,即其概率P≈0.17,計算四個選項的概率,約為0.17者即為正確答案.【詳解】解:在“石頭、剪刀、布”的游戲中,小明隨機出剪刀的概率是,故A選項錯誤,擲一枚質(zhì)地均勻的正六面體骰子,向上一面的點數(shù)是4的概率是≈0.17,故B選項正確,一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌,抽中紅桃得概率是,故C選項錯誤,拋擲一枚均勻的硬幣,前2次都正面朝上,第3次正面仍朝上的概率是,故D選項錯誤,故選B.【點睛】此題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.9、B【解析】
先寫出同意第1號同學當選的同學,再寫出同意第2號同學當選的同學,那么同時同意1,2號同學當選的人數(shù)是他們對應相乘再相加.【詳解】第1,2,3,……,1名同學是否同意第1號同學當選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學當選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是同時同意第1號和第2號同學當選的人數(shù),故選B.【點睛】本題考查了推理應用題,題目比較新穎,是基礎(chǔ)題.10、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】試題分析:根據(jù)圓錐的側(cè)面積公式S=πrl得出圓錐的母線長,再結(jié)合扇形面積即可求出圓心角的度數(shù).解:∵側(cè)面積為15πcm2,∴圓錐側(cè)面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側(cè)面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.12、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵,本題還考查了梯形的中位線等于上底與下底和的一半.13、100【解析】先在直角△ABE中利用三角函數(shù)求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據(jù)勾股定理得:AC=100.即此時王英同學離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.14、1【解析】
根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當實驗的所有可能結(jié)果不是有限個或結(jié)果個數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.15、【解析】
根據(jù)同底數(shù)冪的乘法法則計算即可.【詳解】故答案是:【點睛】本題考查了同底數(shù)冪的乘法,熟練掌握同底數(shù)冪的乘法運算法則是解題的關(guān)鍵.16、④【解析】
根據(jù)題意[x)表示大于x的最小整數(shù),結(jié)合各項進行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實數(shù)x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點睛】此題考查運算的定義,解題關(guān)鍵在于理解題意的運算法則.三、解答題(共8題,共72分)17、(1)證明見解析;(2)4.【解析】
(1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【點睛】本題考查平行四邊形的性質(zhì)和判定、直角三角形的判定、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考常考題型.18、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.19、1.4米.【解析】
過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,則EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的長度,進而可得出EF的長度,再在Rt△MEF中利用勾股定理即可求出EM的長,此題得解.【詳解】過點B作BE⊥AD于點E,過點C作CF⊥AD于點F,延長FC到點M,使得BE=CM,如圖所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB?sin∠A≈0.6,AE=AB?cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD?sin∠D≈0.7,DF=CD?cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四邊形BEMC為平行四邊形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,F(xiàn)M=CF+CM=1.3,∴EM=≈1.4,∴B與C之間的距離約為1.4米.【點睛】本題考查了解直角三角形的應用、勾股定理以及平行四邊形的判定與性質(zhì),正確添加輔助線,構(gòu)造直角三角形,利用勾股定理求出BC的長度是解題的關(guān)鍵.20、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設(shè)AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設(shè)參的數(shù)學思想,得到BE垂直平分AC是解(1)的關(guān)鍵,得到Rt△ACH∽Rt△BAC是解(2)的關(guān)鍵.21、6作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G【解析】
(1)根據(jù)三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,過G點作GD⊥AC于D,四邊形DEFG即為所求正方形.【詳解】解:(1)4×3÷2=6,故△ABC的面積等于6.(2)如圖所示,作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,四邊形DEFG即為所求正方形.
故答案為:6,作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G.【點睛】本題主要考查了作圖-應用與設(shè)計作圖、三角形的面積以及正方形的性質(zhì)、角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)及正方形的性質(zhì)作出正確的圖形是解本題的關(guān)鍵.22、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】
(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設(shè)則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關(guān)于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設(shè)則由勾股定理得∴(3)①當時,Ⅰ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度扶貧資金管理及使用專項合同3篇
- 2025年度智能廣告創(chuàng)意制作與推廣服務合同4篇
- 2024鋪位出租合同-親子樂園鋪位租賃管理協(xié)議3篇
- 2025年度石材加工與大理石施工一體化工程合同4篇
- 2025年度土地整治與修復項目租賃合同4篇
- 2025年度智能生產(chǎn)線承包運營服務合同4篇
- 2024版貨車租賃合規(guī)性及責任明確合同版B版
- 2025年度水電安裝工程智能化施工技術(shù)與保修服務合同3篇
- 2025年度智能物流配套廠房建設(shè)合同范本4篇
- 2025年度智能家居瓷磚批發(fā)代理銷售合同3篇
- 使用錯誤評估報告(可用性工程)模版
- 公司章程(二個股東模板)
- GB/T 19889.7-2005聲學建筑和建筑構(gòu)件隔聲測量第7部分:樓板撞擊聲隔聲的現(xiàn)場測量
- 世界奧林匹克數(shù)學競賽6年級試題
- 藥用植物學-課件
- 文化差異與跨文化交際課件(完整版)
- 國貨彩瞳美妝化消費趨勢洞察報告
- 云南省就業(yè)創(chuàng)業(yè)失業(yè)登記申請表
- UL_標準(1026)家用電器中文版本
- 國網(wǎng)三個項目部標準化手冊(課堂PPT)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評論
0/150
提交評論