遼寧省丹東33中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第1頁
遼寧省丹東33中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第2頁
遼寧省丹東33中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第3頁
遼寧省丹東33中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第4頁
遼寧省丹東33中學2024屆中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

遼寧省丹東33中學2024屆中考數(shù)學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列式子中,與互為有理化因式的是()A. B. C. D.2.某校舉行運動會,從商場購買一定數(shù)量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.3.下列命題是真命題的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共頂點的兩個角是對頂角 D.等腰三角形兩底角相等4.若x=-2是關于x的一元二次方程x2-ax+a2=0的一個根,則a的值為()A.1或4 B.-1或-4 C.-1或4 D.1或-45.共享單車為市民短距離出行帶來了極大便利.據(jù)2017年“深圳互聯(lián)網(wǎng)自行車發(fā)展評估報告”披露,深圳市日均使用共享單車2590000人次,其中2590000用科學記數(shù)法表示為()A.259×104 B.25.9×105 C.2.59×106 D.0.259×1076.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.7.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無解8.如圖已知⊙O的內(nèi)接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數(shù)為()A.25° B.30° C.35° D.40°9.的絕對值是()A. B. C. D.10.如圖,先鋒村準備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,身高1.6米的小麗在陽光下的影長為2米,在同一時刻,一棵大樹的影長為8米,則這棵樹的高度為_____米.12.如圖,直線l1∥l2∥l3,等邊△ABC的頂點B、C分別在直線l2、l3上,若邊BC與直線l3的夾角∠1=25°,則邊AB與直線l1的夾角∠2=________.13.已知直線m∥n,將一塊含有30°角的直角三角板ABC按如圖方式放置,其中A、B兩點分別落在直線m、n上,若∠1=20°,則∠2=_____度.14.農(nóng)科院新培育出A、B兩種新麥種,為了了解它們的發(fā)芽情況,在推廣前做了五次發(fā)芽實驗,每次隨機各自取相同種子數(shù),在相同的培育環(huán)境中分別實驗,實驗情況記錄如下:種子數(shù)量10020050010002000A出芽種子數(shù)961654919841965發(fā)芽率0.960.830.980.980.98B出芽種子數(shù)961924869771946發(fā)芽率0.960.960.970.980.97下面有三個推斷:①當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率均為0.96,所以他們發(fā)芽的概率一樣;②隨著實驗種子數(shù)量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩(wěn)定性,可以估計A種子出芽的概率是0.98;③在同樣的地質環(huán)境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).15.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.16.二次函數(shù)的圖象如圖,若一元二次方程有實數(shù)根,則的最大值為___17.在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球實驗:將球攪勻后從中隨機摸出一個,記下顏色,再放回袋中,不斷重復.下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是_____.摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率m/n0.580.640.580.590.6050.601三、解答題(共7小題,滿分69分)18.(10分)某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下列問題:出租車的起步價是多少元?當x>3時,求y關于x的函數(shù)關系式;若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.19.(5分)先化簡代數(shù)式,再從范圍內(nèi)選取一個合適的整數(shù)作為的值代入求值。20.(8分)如圖所示,已知一次函數(shù)(k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)(m≠0)的圖象在第一象限交于C點,CD垂直于x軸,垂足為D.若OA=OB=OD=1.(1)求點A、B、D的坐標;(2)求一次函數(shù)和反比例函數(shù)的解析式.21.(10分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經(jīng)過橋DC,沿折線A→D→C→B到達,現(xiàn)在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現(xiàn)在從A地到達B地可比原來少走多少路程?(以上兩問中的結果均精確到0.1km,參考數(shù)據(jù):≈1.14,≈1.73)22.(10分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發(fā)現(xiàn)規(guī)律④教師讓學生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調(diào)查教學效果,八年級教師將上述教學方法作為調(diào)研內(nèi)容發(fā)到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調(diào)查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?23.(12分)如圖,在直角坐標系中△ABC的A、B、C三點坐標A(7,1)、B(8,2)、C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側),畫出△A′B′C′關于y軸對稱的△A′'B′'C′';(2)寫出點A'的坐標.24.(14分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

直接利用有理化因式的定義分析得出答案.【詳解】∵()(,)=12﹣2,=10,∴與互為有理化因式的是:,故選B.【點睛】本題考查了有理化因式,如果兩個含有二次根式的非零代數(shù)式相乘,它們的積不含有二次根式,就說這兩個非零代數(shù)式互為有理化因式.單項二次根式的有理化因式是它本身或者本身的相反數(shù);其他代數(shù)式的有理化因式可用平方差公式來進行分步確定.2、B【解析】試題分析:設每個筆記本的價格為x元,根據(jù)“用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程3、D【解析】

解:A、如果a+b=0,那么a=b=0,或a=﹣b,錯誤,為假命題;B、=4的平方根是±2,錯誤,為假命題;C、有公共頂點且相等的兩個角是對頂角,錯誤,為假命題;D、等腰三角形兩底角相等,正確,為真命題;故選D.4、B【解析】

試題分析:把x=﹣2代入關于x的一元二次方程x2﹣ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案選B.考點:一元二次方程的解;一元二次方程的解法.5、C【解析】

絕對值大于1的正數(shù)可以科學計數(shù)法,a×10n,即可得出答案.【詳解】n由左邊第一個不為0的數(shù)字前面的0的個數(shù)決定,所以此處n=6.【點睛】本題考查了科學計數(shù)法的運用,熟悉掌握是解決本題的關鍵.6、A【解析】

列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.7、C【解析】

先把分式方程化為整式方程,求出x的值,代入最簡公分母進行檢驗.【詳解】方程兩邊同時乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關鍵.8、B【解析】

如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【點睛】本題考查圓周角定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.9、C【解析】

根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【點睛】錯因分析

容易題,失分原因:未掌握絕對值的概念.10、D【解析】

利用所給的角的余弦值求解即可.【詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【點睛】本題主要考查學生對坡度、坡角的理解及運用.二、填空題(共7小題,每小題3分,滿分21分)11、6.4【解析】

根據(jù)平行投影,同一時刻物長與影長的比值固定即可解題.【詳解】解:由題可知:,解得:樹高=6.4米.【點睛】本題考查了投影的實際應用,屬于簡單題,熟悉投影概念,列比例式是解題關鍵.12、35【解析】試題分析:如圖:∵△ABC是等邊三角形,∴∠ABC=60°,又∵直線l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考點:1.平行線的性質;2.等邊三角形的性質.13、1【解析】

根據(jù)平行線的性質即可得到∠2=∠ABC+∠1,據(jù)此進行計算即可.【詳解】解:∵直線m∥n,∴∠2=∠ABC+∠1=30°+20°=1°,故答案為:1.【點睛】本題考查了平行線的性質,熟練掌握平行線的性質是解題的關鍵.14、②③【解析】分析:根據(jù)隨機事件發(fā)生的“頻率”與“概率”的關系進行分析解答即可.詳解:(1)由表中的數(shù)據(jù)可知,當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率雖然都是96%,但結合后續(xù)實驗數(shù)據(jù)可知,此時的發(fā)芽率并不穩(wěn)定,故不能確定兩種種子發(fā)芽的概率就是96%,所以①中的說法不合理;(2)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,故可以估計A種種子發(fā)芽的概率是98%,所以②中的說法是合理的;(3)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,而B種種子發(fā)芽的頻率穩(wěn)定在97%左右,故可以估計在相同條件下,A種種子發(fā)芽率大于B種種子發(fā)芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發(fā)生的頻率與概率之間的關系”是正確解答本題的關鍵.15、1【解析】

根據(jù)一元二次方程的解及根與系數(shù)的關系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數(shù)的關系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關鍵.16、3【解析】試題解析::∵拋物線的開口向上,頂點縱坐標為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實數(shù)根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,17、0.1【解析】

根據(jù)表格中的數(shù)據(jù),隨著實驗次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出白球的概率.【詳解】解:觀察表格得:通過多次摸球實驗后發(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.1左右,則P白球=0.1.故答案為0.1.【點睛】本題考查了利用頻率估計概率,在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.三、解答題(共7小題,滿分69分)18、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】

(1)根據(jù)函數(shù)圖象可以得出出租車的起步價是8元,設當x>3時,y與x的函數(shù)關系式為y=kx+b(k≠0),運用待定系數(shù)法就可以求出結論;

(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價是8元;設當x>3時,y與x的函數(shù)關系式為y=kx+b(k≠0),由函數(shù)圖象,得,解得:故y與x的函數(shù)關系式為:y=2x+2;(2)∵32元>8元,∴當y=32時,32=2x+2,x=15答:這位乘客乘車的里程是15km.19、-2【解析】

先根據(jù)分式的混合運算順序和運算法則化簡原式,再選取使分式有意義的x的值代入計算可得.【詳解】原式===,∵x≠±1且x≠0,∴在-1≤x≤2中符合條件的x的值為x=2,則原式=-=-2.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則.20、(1)A(-1,0),B(0,1),D(1,0)(2)一次函數(shù)的解析式為反比例函數(shù)的解析式為【解析】解:(1)∵OA=OB=OD=1,∴點A、B、D的坐標分別為A(-1,0),B(0,1),D(1,0)。(2)∵點A、B在一次函數(shù)(k≠0)的圖象上,∴,解得。∴一次函數(shù)的解析式為?!唿cC在一次函數(shù)y=x+1的圖象上,且CD⊥x軸,∴點C的坐標為(1,2)。又∵點C在反比例函數(shù)(m≠0)的圖象上,∴m=1×2=2?!喾幢壤瘮?shù)的解析式為。(1)根據(jù)OA=OB=OD=1和各坐標軸上的點的特點易得到所求點的坐標。(2)將A、B兩點坐標分別代入,可用待定系數(shù)法確定一次函數(shù)的解析式,由C點在一次函數(shù)的圖象上可確定C點坐標,將C點坐標代入可確定反比例函數(shù)的解析式。21、(1)橋DC與直線AB的距離是6.0km;(2)現(xiàn)在從A地到達B地可比原來少走的路程是4.1km.【解析】

(1)過C向AB作垂線構建三角形,求出垂線段的長度即可;(2)過點D向AB作垂線,然后根據(jù)解三角形求出AD,CB的長,進而求出現(xiàn)在從A地到達B地可比原來少走的路程.【詳解】解:(1)作CH⊥AB于點H,如圖所示,∵BC=12km,∠B=30°,∴km,BH=km,即橋DC與直線AB的距離是6.0km;(2)作DM⊥AB于點M,如圖所示,∵橋DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴現(xiàn)在從A地到達B地可比原來少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,即現(xiàn)在從A地到達B地可比原來少走的路程是4.1km.【點睛】做輔助線,構建直角三角形,根據(jù)邊角關系解三角形,是解答本題的關鍵.22、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】

(1)由題意可知:喜歡方法②的學生有60-6-18-27=9(人);(2)求方法③的圓心角應先求所占比值,再乘以360°;(3)根據(jù)條形的高低可判斷喜歡方法④的學生最多,人數(shù)應該等于總人數(shù)乘以喜歡方法④所占的比例;【詳解】(1)方法②人數(shù)為60?6?18?27=9(人);補條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學生最多,人數(shù)為(人);【點睛】考查扇形統(tǒng)計圖,條形統(tǒng)計圖,用樣本估計總體,比較基礎,難度不大,是中考??碱}型.23、(1)見解析;(2)點A'的坐標為(-3,3)【解析】

解:(1),△A′'B′'C′'如圖所示.(2)點A'的坐標為(-3,3).24、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論