福建省重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)押題試卷含解析_第1頁(yè)
福建省重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)押題試卷含解析_第2頁(yè)
福建省重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)押題試卷含解析_第3頁(yè)
福建省重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)押題試卷含解析_第4頁(yè)
福建省重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建省重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)押題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點(diǎn),G是△ABC的重心,如果以點(diǎn)D為圓心DG為半徑的圓和以點(diǎn)C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<102.如圖,點(diǎn)A是反比例函數(shù)y=的圖象上的一點(diǎn),過(guò)點(diǎn)A作AB⊥x軸,垂足為B.點(diǎn)C為y軸上的一點(diǎn),連接AC,BC.若△ABC的面積為3,則k的值是()A.3 B.﹣3 C.6 D.﹣63.已知關(guān)于x的一元二次方程mx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是().A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>14.﹣的絕對(duì)值是()A.﹣ B. C.﹣2 D.25.在平面直角坐標(biāo)系中,將拋物線繞著它與軸的交點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是().A. B.C. D.6.下列各數(shù):1.414,,﹣,0,其中是無(wú)理數(shù)的為()A.1.414 B. C.﹣ D.07.如下字體的四個(gè)漢字中,是軸對(duì)稱圖形的是()A. B. C. D.8.下面運(yùn)算正確的是()A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|9.下列圖形中,是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是()A. B. C. D.10.下列運(yùn)算不正確的是A.a(chǎn)5+C.2a2二、填空題(共7小題,每小題3分,滿分21分)11.若反比例函數(shù)y=的圖象在每一個(gè)象限中,y隨著x的增大而減小,則m的取值范圍是_____.12.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫弧,分別交AB,AC于點(diǎn)E,F;②分別以點(diǎn)E,F為圓心,大于EF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為.

13.函數(shù)y=的自變量x的取值范圍為____________.14.如圖,點(diǎn)是反比例函數(shù)圖像上的兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),過(guò)點(diǎn)作軸于點(diǎn),交于點(diǎn),延長(zhǎng)交軸于點(diǎn),已知,,則的值為__________.15.如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B、E在反比例函數(shù)的圖像上,OA=1,OC=6,則正方形ADEF的邊長(zhǎng)為.16.計(jì)算:的值是______________.17.已知拋物線y=x2﹣x+3與y軸相交于點(diǎn)M,其頂點(diǎn)為N,平移該拋物線,使點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)M′與點(diǎn)N重合,則平移后的拋物線的解析式為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面的最大距離是5m.經(jīng)過(guò)討論,同學(xué)們得出三種建立平面直角坐標(biāo)系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點(diǎn)坐標(biāo)是,求出你所選方案中的拋物線的表達(dá)式;因?yàn)樯嫌嗡畮?kù)泄洪,水面寬度變?yōu)?m,求水面上漲的高度.19.(5分)如圖,拋物線y=x2﹣2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過(guò)P(1,﹣m)作PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(1)若m=2,求點(diǎn)A和點(diǎn)C的坐標(biāo);(2)令m>1,連接CA,若△ACP為直角三角形,求m的值;(3)在坐標(biāo)軸上是否存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.20.(8分)如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點(diǎn).求k和n的值;若點(diǎn)C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時(shí),函數(shù)值y的取值范圍.21.(10分)為了解某校九年級(jí)男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測(cè)試,并對(duì)成績(jī)進(jìn)行了統(tǒng)計(jì),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)跟進(jìn)相關(guān)信息,解答下列問(wèn)題:(1)本次抽測(cè)的男生人數(shù)為,圖①中m的值為;(2)求本次抽測(cè)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),根據(jù)樣本數(shù)據(jù),估計(jì)該校350名九年級(jí)男生中有多少人體能達(dá)標(biāo).22.(10分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當(dāng)a=6時(shí),求圖案中陰影部分正六邊形的面積.23.(12分)先化簡(jiǎn),再求值:(1﹣)÷,其中x=1.24.(14分)拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,3)點(diǎn).(1)求出m的值并畫出這條拋物線;(2)求它與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);(3)x取什么值時(shí),拋物線在x軸上方?(4)x取什么值時(shí),y的值隨x值的增大而減小?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】延長(zhǎng)CD交⊙D于點(diǎn)E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點(diǎn),∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點(diǎn)睛】本題考查了三角形的重心的性質(zhì)、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長(zhǎng)是解題的關(guān)鍵.2、D【解析】試題分析:連結(jié)OA,如圖,∵AB⊥x軸,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故選D.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.3、A【解析】

∵一元二次方程mx2+2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,∴m≠0,且22-4×m×(﹣1)>0,解得:m>﹣1且m≠0.故選A.【點(diǎn)睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當(dāng)△=b2﹣4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)△=b2﹣4ac=0時(shí),方程有有兩個(gè)相等的實(shí)數(shù)根;(3)當(dāng)△=b2﹣4ac<0時(shí),方程沒(méi)有實(shí)數(shù)根.4、B【解析】

根據(jù)求絕對(duì)值的法則,直接計(jì)算即可解答.【詳解】,故選:B.【點(diǎn)睛】本題主要考查求絕對(duì)值的法則,掌握負(fù)數(shù)的絕對(duì)值等于它的相反數(shù),是解題的關(guān)鍵.5、B【解析】

把拋物線y=x2+2x+3整理成頂點(diǎn)式形式并求出頂點(diǎn)坐標(biāo),再求出與y軸的交點(diǎn)坐標(biāo),然后求出所得拋物線的頂點(diǎn),再利用頂點(diǎn)式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點(diǎn)坐標(biāo)為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點(diǎn)坐標(biāo)為(0,3),

∵拋物線繞與y軸的交點(diǎn)旋轉(zhuǎn)180°,

∴所得拋物線的頂點(diǎn)坐標(biāo)為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,利用頂點(diǎn)的變化確定函數(shù)解析式的變化可以使求解更簡(jiǎn)便.6、B【解析】試題分析:根據(jù)無(wú)理數(shù)的定義可得是無(wú)理數(shù).故答案選B.考點(diǎn):無(wú)理數(shù)的定義.7、A【解析】試題分析:根據(jù)軸對(duì)稱圖形的意義:如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸;據(jù)此可知,A為軸對(duì)稱圖形.故選A.考點(diǎn):軸對(duì)稱圖形8、D【解析】

分別利用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)分別化簡(jiǎn)求出答案.【詳解】解:A,,故此選項(xiàng)錯(cuò)誤;B,,故此選項(xiàng)錯(cuò)誤;C,,故此選項(xiàng)錯(cuò)誤;D,,故此選項(xiàng)正確.所以D選項(xiàng)是正確的.【點(diǎn)睛】靈活運(yùn)用整數(shù)指數(shù)冪的性質(zhì)以及合并同類項(xiàng)以及積的乘方運(yùn)算、絕對(duì)值的性質(zhì)可以求出答案.9、B【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念判斷即可.【詳解】解:A、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故錯(cuò)誤;B、是中心對(duì)稱圖形,不是軸對(duì)稱圖形,故正確;C、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故錯(cuò)誤;D、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故錯(cuò)誤.故選B.【點(diǎn)睛】本題考查的是中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.10、B【解析】(-2a二、填空題(共7小題,每小題3分,滿分21分)11、m>1【解析】∵反比例函數(shù)的圖象在其每個(gè)象限內(nèi),y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.12、65°【解析】

根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,根據(jù)角平分線的性質(zhì)解答即可.【詳解】根據(jù)已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,

∴∠CAD=25°;

在△ADC中,∠C=90°,∠CAD=25°,

∴∠ADC=65°(直角三角形中的兩個(gè)銳角互余);

故答案是:65°.13、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點(diǎn):函數(shù)自變量的取值范圍.14、【解析】

過(guò)點(diǎn)B作BF⊥OC于點(diǎn)F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因?yàn)?,所以,,又因?yàn)锳D∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因?yàn)镾△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過(guò)點(diǎn)B作BF⊥OC于點(diǎn)F,由反比例函數(shù)的比例系數(shù)|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點(diǎn)睛】本題考查反比例函數(shù)的比例系數(shù)|k|的幾何意義,解題關(guān)鍵是熟練運(yùn)用相似三角形的判定定理和性質(zhì)定理.15、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可知k=6,∴反比例函數(shù)的解析式為;設(shè)正方形ADEF的邊長(zhǎng)為a,則點(diǎn)E的坐標(biāo)為(a+1,a),∵點(diǎn)E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長(zhǎng)是2.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.16、-1【解析】解:=-1.故答案為:-1.17、y=(x﹣1)2+【解析】

直接利用拋物線與坐標(biāo)軸交點(diǎn)求法結(jié)合頂點(diǎn)坐標(biāo)求法分別得出M、N點(diǎn)坐標(biāo),進(jìn)而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點(diǎn)坐標(biāo)為:(,),令x=0,則y=3,∴M點(diǎn)的坐標(biāo)是(0,3).∵平移該拋物線,使點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)M′與點(diǎn)N重合,∴拋物線向下平移個(gè)單位長(zhǎng)度,再向右平移個(gè)單位長(zhǎng)度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.【點(diǎn)睛】此題主要考查了拋物線與坐標(biāo)軸交點(diǎn)求法以及二次函數(shù)的平移,正確得出平移方向和距離是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據(jù)拋物線在坐標(biāo)系的位置,可用待定系數(shù)法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結(jié)論.試題解析:解:方案1:(1)點(diǎn)B的坐標(biāo)為(5,0),設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點(diǎn)為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點(diǎn)B的坐標(biāo)為(10,0).設(shè)拋物線的解析式為:.由題意可以得到拋物線的頂點(diǎn)為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點(diǎn)B的坐標(biāo)為(5,),由題意可以得到拋物線的頂點(diǎn)為(0,0).設(shè)拋物線的解析式為:,把點(diǎn)B的坐標(biāo)(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.19、(1)A(4,0),C(3,﹣3);(2)m=;(3)E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);【解析】

方法一:(1)m=2時(shí),函數(shù)解析式為y=,分別令y=0,x=1,即可求得點(diǎn)A和點(diǎn)B的坐標(biāo),進(jìn)而可得到點(diǎn)C的坐標(biāo);(2)先用m表示出P,AC三點(diǎn)的坐標(biāo),分別討論∠APC=,∠ACP=,∠PAC=三種情況,利用勾股定理即可求得m的值;(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過(guò)點(diǎn)F作FN⊥PM于N,可得Rt△FNP∽R(shí)t△PBC,NP:NF=BC:BP求得直線PE的解析式,后利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形求得E點(diǎn)坐標(biāo).方法二:(1)同方法一.(2)由△ACP為直角三角形,由相互垂直的兩直線斜率相乘為-1,可得m的值;(3)利用△PEC是以P為直角頂點(diǎn)的等腰直角三角形,分別討論E點(diǎn)再x軸上,y軸上的情況求得E點(diǎn)坐標(biāo).【詳解】方法一:解:(1)若m=2,拋物線y=x2﹣2mx=x2﹣4x,∴對(duì)稱軸x=2,令y=0,則x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,則y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵拋物線y=x2﹣2mx(m>1),∴A(2m,0)對(duì)稱軸x=m,∵P(1,﹣m)把x=1代入拋物線y=x2﹣2mx,則y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP為直角三角形,∴當(dāng)∠ACP=90°時(shí),PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),當(dāng)∠APC=90°時(shí),PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=.(3)設(shè)點(diǎn)F(x,y)是直線PE上任意一點(diǎn),過(guò)點(diǎn)F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽R(shí)t△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直線PE的解析式為y=2x﹣2﹣m.令y=0,則x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x軸上存在E點(diǎn),使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(2,0)或E(,0);令x=0,則y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y軸上存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,此時(shí)E(0,﹣4),∴在坐標(biāo)軸上是存在點(diǎn)E,使得△PEC是以P為直角頂點(diǎn)的等腰直角三角形,E點(diǎn)的坐標(biāo)為(2,0)或(,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵對(duì)稱軸x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP為直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴KAC×KAP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴KAC×KCP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴KAP×KCP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴KCP=,△PEC是以P為直角頂點(diǎn)的等腰直角三角形,∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,∵P(1,﹣m),∴l(xiāng)PE:y=2x﹣2﹣m,∵點(diǎn)E在坐標(biāo)軸上,∴①當(dāng)點(diǎn)E在x軸上時(shí),E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m﹣1)2,∴m1=2,m2=,∴E1(2,0),E2(,0),②當(dāng)點(diǎn)E在y軸上時(shí),E(0,﹣2﹣m)且PE=PC,∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴1=(m﹣1)2,∴m1=2,m2=0(舍),∴E(0,4),綜上所述,(2,0)或(,0)或(0,﹣4).【點(diǎn)睛】本題主要考查二次函數(shù)的圖象與性質(zhì).擴(kuò)展:設(shè)坐標(biāo)系中兩點(diǎn)坐標(biāo)分別為點(diǎn)A(),點(diǎn)B(),則線段AB的長(zhǎng)度為:AB=.設(shè)平面內(nèi)直線AB的解析式為:,直線CD的解析式為:(1)若AB//CD,則有:;(2)若AB⊥CD,則有:.20、(1)n=1,k=1.(2)當(dāng)2≤x≤1時(shí),1≤y≤2.【解析】【分析】(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出n值,進(jìn)而可得出點(diǎn)B的坐標(biāo),再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出k值;(2)由k=1>0結(jié)合反比例函數(shù)的性質(zhì),即可求出:當(dāng)2≤x≤1時(shí),1≤y≤2.【詳解】(1)當(dāng)x=1時(shí),n=﹣×1+4=1,∴點(diǎn)B的坐標(biāo)為(1,1).∵反比例函數(shù)y=過(guò)點(diǎn)B(1,1),∴k=1×1=1;(2)∵k=1>0,∴當(dāng)x>0時(shí),y隨x值增大而減小,∴當(dāng)2≤x≤1時(shí),1≤y≤2.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,反比例函數(shù)的性質(zhì),用到了點(diǎn)在函數(shù)圖象上,則點(diǎn)的坐標(biāo)就適合所在函數(shù)圖象的函數(shù)解析式,待定系數(shù)法等知識(shí),熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.21、(1)50、1;(2)平均數(shù)為5.16次,眾數(shù)為5次,中位數(shù)為5次;(3)估計(jì)該校350名九年級(jí)男生中有2人體能達(dá)標(biāo).【解析】分析:(Ⅰ)根據(jù)4次的人數(shù)及其百分比可得總?cè)藬?shù),用6次的人數(shù)除以總?cè)藬?shù)求得m即可;(Ⅱ)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義求解可得;(Ⅲ)總?cè)藬?shù)乘以樣本中5、6、7次人數(shù)之和占被調(diào)查人數(shù)的比例可得.詳解:(Ⅰ)本次抽測(cè)的男生人數(shù)為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數(shù)為=5.16次,眾數(shù)為5次,中位數(shù)為=5次;(Ⅲ)×

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論