版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省泉州市石獅市中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為()A.10 B.9 C.8 D.72.如圖,A、B、C、D是⊙O上的四點(diǎn),BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°3.某公司第4月份投入1000萬元科研經(jīng)費(fèi),計(jì)劃6月份投入科研經(jīng)費(fèi)比4月多500萬元.設(shè)該公司第5、6個(gè)月投放科研經(jīng)費(fèi)的月平均增長(zhǎng)率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5004.某校120名學(xué)生某一周用于閱讀課外書籍的時(shí)間的頻率分布直方圖如圖所示.其中閱讀時(shí)間是8~10小時(shí)的頻數(shù)和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.255.若分式的值為零,則x的值是()A.1 B. C. D.26.如圖,半徑為3的⊙A經(jīng)過原點(diǎn)O和點(diǎn)C(0,2),B是y軸左側(cè)⊙A優(yōu)弧上一點(diǎn),則tan∠OBC為()A. B.2 C. D.7.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點(diǎn)C.=± D.與最接近的整數(shù)是38.如圖,在圓O中,直徑AB平分弦CD于點(diǎn)E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長(zhǎng)是()A.2 B.4 C. D.29.如圖是二次函數(shù)的圖象,有下面四個(gè)結(jié)論:;;;,其中正確的結(jié)論是
A. B. C. D.10.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖所示,平行四邊形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個(gè)符合要求的條件即可)12.如果一個(gè)直角三角形的兩條直角邊的長(zhǎng)分別為5、12,則斜邊上的高的長(zhǎng)度為______.13.化簡(jiǎn):=.14.如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.15.如圖,點(diǎn)A,B是反比例函數(shù)y=(x>0)圖象上的兩點(diǎn),過點(diǎn)A,B分別作AC⊥x軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,連接OA,BC,已知點(diǎn)C(2,0),BD=2,S△BCD=3,則S△AOC=__.16.方程組的解是________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,正方形的邊長(zhǎng)為,頂點(diǎn)、分別在軸、軸的正半軸,拋物線經(jīng)過、兩點(diǎn),點(diǎn)為拋物線的頂點(diǎn),連接、、.求此拋物線的解析式.求此拋物線頂點(diǎn)的坐標(biāo)和四邊形的面積.18.(8分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.19.(8分)在平面直角坐標(biāo)系中,某個(gè)函數(shù)圖象上任意兩點(diǎn)的坐標(biāo)分別為(﹣t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<﹣t的部分沿直線y=y(tǒng)1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y(tǒng)2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.例如:如圖,當(dāng)t=1時(shí),原函數(shù)y=x,圖象G所對(duì)應(yīng)的函數(shù)關(guān)系式為y=.(1)當(dāng)t=時(shí),原函數(shù)為y=x+1,圖象G與坐標(biāo)軸的交點(diǎn)坐標(biāo)是.(2)當(dāng)t=時(shí),原函數(shù)為y=x2﹣2x①圖象G所對(duì)應(yīng)的函數(shù)值y隨x的增大而減小時(shí),x的取值范圍是.②圖象G所對(duì)應(yīng)的函數(shù)是否有最大值,如果有,請(qǐng)求出最大值;如果沒有,請(qǐng)說明理由.(3)對(duì)應(yīng)函數(shù)y=x2﹣2nx+n2﹣3(n為常數(shù)).①n=﹣1時(shí),若圖象G與直線y=2恰好有兩個(gè)交點(diǎn),求t的取值范圍.②當(dāng)t=2時(shí),若圖象G在n2﹣2≤x≤n2﹣1上的函數(shù)值y隨x的增大而減小,直接寫出n的取值范圍.20.(8分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點(diǎn)D,過點(diǎn)D作DE⊥BC交AB延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長(zhǎng).21.(8分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過點(diǎn)A作⊙O的切線與OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長(zhǎng).22.(10分)為了解某校落實(shí)新課改精神的情況,現(xiàn)以該校九年級(jí)二班的同學(xué)參加課外活動(dòng)的情況為樣本,對(duì)其參加“球類”、“繪畫類”、“舞蹈類”、“音樂類”、“棋類”活動(dòng)的情況進(jìn)行調(diào)查統(tǒng)計(jì),并繪制了如圖所示的統(tǒng)計(jì)圖.
(1)參加音樂類活動(dòng)的學(xué)生人數(shù)為
人,參加球類活動(dòng)的人數(shù)的百分比為
(2)請(qǐng)把圖2(條形統(tǒng)計(jì)圖)補(bǔ)充完整;
(3)該校學(xué)生共600人,則參加棋類活動(dòng)的人數(shù)約為.
(4)該班參加舞蹈類活動(dòng)的4位同學(xué)中,有1位男生(用E表示)和3位女生(分別用F,G,H表示),先準(zhǔn)備從中選取兩名同學(xué)組成舞伴,請(qǐng)用列表或畫樹狀圖的方法求恰好選中一男一女的概率.
23.(12分)為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開展“書法、武術(shù)、黃梅戲進(jìn)校園”活動(dòng).今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績(jī)?cè)u(píng)定為A,B,C,D,E五個(gè)等級(jí),該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);(2)求扇形統(tǒng)計(jì)圖B等級(jí)所對(duì)應(yīng)扇形的圓心角度數(shù);(3)已知A等級(jí)的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請(qǐng)你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.24.為了保護(hù)視力,學(xué)校開展了全校性的視力保健活動(dòng),活動(dòng)前,隨機(jī)抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn),精確到0.1);活動(dòng)后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示分組頻數(shù)4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活動(dòng)所抽取的學(xué)生人數(shù);(2)若視力達(dá)到4.8及以上為達(dá)標(biāo),計(jì)算活動(dòng)前該校學(xué)生的視力達(dá)標(biāo)率;(3)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度評(píng)價(jià)視力保健活動(dòng)的效果.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個(gè)內(nèi)角的度數(shù),再延長(zhǎng)五邊形的兩邊相交于一點(diǎn),并根據(jù)四邊形的內(nèi)角和求出這個(gè)角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個(gè)數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個(gè)內(nèi)角為540°÷5=18°,如圖,延長(zhǎng)正五邊形的兩邊相交于點(diǎn)O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個(gè)五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個(gè)五邊形.故選D.點(diǎn)睛:本題考查了多邊形的內(nèi)角和公式,延長(zhǎng)正五邊形的兩邊相交于一點(diǎn),并求出這個(gè)角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個(gè)正五邊形.2、A【解析】
解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點(diǎn)B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.3、A【解析】
設(shè)該公司第5、6個(gè)月投放科研經(jīng)費(fèi)的月平均增長(zhǎng)率為x,5月份投放科研經(jīng)費(fèi)為1000(1+x),6月份投放科研經(jīng)費(fèi)為1000(1+x)(1+x),即可得答案.【詳解】設(shè)該公司第5、6個(gè)月投放科研經(jīng)費(fèi)的月平均增長(zhǎng)率為x,則6月份投放科研經(jīng)費(fèi)1000(1+x)2=1000+500,故選A.【點(diǎn)睛】考查一元二次方程的應(yīng)用,求平均變化率的方法為:若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.4、D【解析】分析:根據(jù)頻率分布直方圖中的數(shù)據(jù)信息和被調(diào)查學(xué)生總數(shù)為120進(jìn)行計(jì)算即可作出判斷.詳解:由頻率分布直方圖可知:一周內(nèi)用于閱讀的時(shí)間在8-10小時(shí)這組的:頻率:組距=0.125,而組距為2,∴一周內(nèi)用于閱讀的時(shí)間在8-10小時(shí)這組的頻率=0.125×2=0.25,又∵被調(diào)查學(xué)生總數(shù)為120人,∴一周內(nèi)用于閱讀的時(shí)間在8-10小時(shí)這組的頻數(shù)=120×0.25=30.綜上所述,選項(xiàng)D中數(shù)據(jù)正確.故選D.點(diǎn)睛:本題解題的關(guān)鍵有兩點(diǎn):(1)要看清,縱軸上的數(shù)據(jù)是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數(shù)、頻率和總數(shù)之間的關(guān)系.5、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.6、C【解析】試題分析:連結(jié)CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點(diǎn):圓周角定理;銳角三角函數(shù)的定義.7、D【解析】
根據(jù)二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無理數(shù)的估算對(duì)各項(xiàng)依次分析,即可解答.【詳解】選項(xiàng)A,+無法計(jì)算;選項(xiàng)B,在數(shù)軸上存在表示的點(diǎn);選項(xiàng)C,;選項(xiàng)D,與最接近的整數(shù)是=1.故選D.【點(diǎn)睛】本題考查了二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無理數(shù)的估算等知識(shí)點(diǎn),熟記這些知識(shí)點(diǎn)是解題的關(guān)鍵.8、D【解析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點(diǎn)睛】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.9、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對(duì)稱軸得到,根據(jù)拋物線與軸的交點(diǎn)在軸下方得到,所以;時(shí),由圖像可知此時(shí),所以;由對(duì)稱軸,可得;當(dāng)時(shí),由圖像可知此時(shí),即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對(duì)稱軸得到,根據(jù)拋物線與軸的交點(diǎn)在軸下方得到,所以,故①正確.②時(shí),由圖像可知此時(shí),即,故②正確.③由對(duì)稱軸,可得,所以錯(cuò)誤,故③錯(cuò)誤;④當(dāng)時(shí),由圖像可知此時(shí),即,將③中變形為,代入可得,故④正確.故答案選D.【點(diǎn)睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,注意用數(shù)形結(jié)合的思想解決問題。10、B【解析】
根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點(diǎn)睛】考查了二次函數(shù)的最值,解題時(shí),利用配方法和非負(fù)數(shù)的性質(zhì)求得xy的最大值.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對(duì)邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.12、【解析】
利用勾股定理求出斜邊長(zhǎng),再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長(zhǎng)分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點(diǎn)睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關(guān)鍵.13、2【解析】
根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個(gè)正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【詳解】∵22=4,∴=2.【點(diǎn)睛】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.14、72°【解析】
首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點(diǎn)睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵15、1.【解析】
由三角形BCD為直角三角形,根據(jù)已知面積與BD的長(zhǎng)求出CD的長(zhǎng),由OC+CD求出OD的長(zhǎng),確定出B的坐標(biāo),代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關(guān)鍵.16、【解析】
利用加減消元法進(jìn)行消元求解即可【詳解】解:由①+②,得3x=6x=2把x=2代入①,得2+3y=5y=1所以原方程組的解為:故答案為:【點(diǎn)睛】本題考查了二元一次方程組的解法,用適當(dāng)?shù)姆椒ń舛淮畏匠探M是解題的關(guān)鍵.三、解答題(共8題,共72分)17、;.【解析】
(1)由正方形的性質(zhì)可求得B、C的坐標(biāo),代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;
(2)把拋物線解析式化為頂點(diǎn)式可求得D點(diǎn)坐標(biāo),再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標(biāo)代入得:,解得:,,則解析式為;∵,∴拋物線頂點(diǎn)坐標(biāo)為,則.【點(diǎn)睛】二次函數(shù)的綜合應(yīng)用.解題的關(guān)鍵是:在(1)中確定出B、C的坐標(biāo)是解題的關(guān)鍵,在(2)中把四邊形轉(zhuǎn)化成兩個(gè)三角形.18、(1)證明見解析(2)當(dāng)四邊形BEDF是菱形時(shí),四邊形AGBD是矩形;證明見解析;【解析】
(1)在證明全等時(shí)常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過角之間的關(guān)系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點(diǎn)、分別是、的中點(diǎn),∴,.∴.在和中,,∴.解:當(dāng)四邊形是菱形時(shí),四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.【點(diǎn)睛】本題主要考查了平行四邊形的基本性質(zhì)和矩形的判定及全等三角形的判定.平行四邊形基本性質(zhì):①平行四邊形兩組對(duì)邊分別平行;②平行四邊形的兩組對(duì)邊分別相等;③平行四邊形的兩組對(duì)角分別相等;④平行四邊形的對(duì)角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.19、(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對(duì)應(yīng)的函數(shù)有最大值為;(3)①;②n≤或n≥.【解析】
(1)根據(jù)題意分別求出翻轉(zhuǎn)之后部分的表達(dá)式及自變量的取值范圍,將y=0代入,求出x值,即可求出圖象G與坐標(biāo)軸的交點(diǎn)坐標(biāo);(2)畫出函數(shù)草圖,求出翻轉(zhuǎn)點(diǎn)和函數(shù)頂點(diǎn)的坐標(biāo),①根據(jù)圖象的增減性可求出y隨x的增大而減小時(shí),x的取值范圍,②根據(jù)圖象很容易計(jì)算出函數(shù)最大值;(3)①將n=﹣1代入到函數(shù)中求出原函數(shù)的表達(dá)式,計(jì)算y=2時(shí),x的值.據(jù)(2)中的圖象,函數(shù)與y=2恰好有兩個(gè)交點(diǎn)時(shí)t大于右邊交點(diǎn)的橫坐標(biāo)且-t大于左邊交點(diǎn)的橫坐標(biāo),據(jù)此求解.②畫出函數(shù)草圖,分別計(jì)算函數(shù)左邊的翻轉(zhuǎn)點(diǎn)A,右邊的翻轉(zhuǎn)點(diǎn)C,函數(shù)的頂點(diǎn)B的橫坐標(biāo)(可用含n的代數(shù)式表示),根據(jù)函數(shù)草圖以及題意列出關(guān)于n的不等式求解即可.【詳解】(1)當(dāng)x=時(shí),y=,當(dāng)x≥時(shí),翻折后函數(shù)的表達(dá)式為:y=﹣x+b,將點(diǎn)(,)坐標(biāo)代入上式并解得:翻折后函數(shù)的表達(dá)式為:y=﹣x+2,當(dāng)y=0時(shí),x=2,即函數(shù)與x軸交點(diǎn)坐標(biāo)為:(2,0);同理沿x=﹣翻折后當(dāng)時(shí)函數(shù)的表達(dá)式為:y=﹣x,函數(shù)與x軸交點(diǎn)坐標(biāo)為:(0,0),因?yàn)樗陨崛?故答案為:(2,0);(2)當(dāng)t=時(shí),由函數(shù)為y=x2﹣2x構(gòu)建的新函數(shù)G的圖象,如下圖所示:點(diǎn)A、B分別是t=﹣、t=的兩個(gè)翻折點(diǎn),點(diǎn)C是拋物線原頂點(diǎn),則點(diǎn)A、B、C的橫坐標(biāo)分別為﹣、1、,①函數(shù)值y隨x的增大而減小時(shí),﹣≤x≤1或x≥,故答案為:﹣≤x≤1或x≥;②函數(shù)在點(diǎn)A處取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:圖象G所對(duì)應(yīng)的函數(shù)有最大值為;(3)n=﹣1時(shí),y=x2+2x﹣2,①參考(2)中的圖象知:當(dāng)y=2時(shí),y=x2+2x﹣2=2,解得:x=﹣1±,若圖象G與直線y=2恰好有兩個(gè)交點(diǎn),則t>﹣1且-t>,所以;②函數(shù)的對(duì)稱軸為:x=n,令y=x2﹣2nx+n2﹣3=0,則x=n±,當(dāng)t=2時(shí),點(diǎn)A、B、C的橫坐標(biāo)分別為:﹣2,n,2,當(dāng)x=n在y軸左側(cè)時(shí),(n≤0),此時(shí)原函數(shù)與x軸的交點(diǎn)坐標(biāo)(n+,0)在x=2的左側(cè),如下圖所示,則函數(shù)在AB段和點(diǎn)C右側(cè),故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,解得:n≤;當(dāng)x=n在y軸右側(cè)時(shí),(n≥0),同理可得:n≥;綜上:n≤或n≥.【點(diǎn)睛】在做本題時(shí),可先根據(jù)題意分別畫出函數(shù)的草圖,根據(jù)草圖進(jìn)行分析更加直觀.在做第(1)問時(shí),需注意翻轉(zhuǎn)后的函數(shù)是分段函數(shù),所以對(duì)最終的解要進(jìn)行分析,排除掉自變量之外的解;(2)根據(jù)草圖很直觀的便可求得;(3)①需注意圖象G與直線y=2恰好有兩個(gè)交點(diǎn),多于2個(gè)交點(diǎn)的要排除;②根據(jù)草圖和增減性,列出不等式,求解即可.20、(1)見解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據(jù)AO=OB知OD是△ABC的中位線,據(jù)此知OD∥BC,結(jié)合DE⊥BC即可得證;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據(jù)S陰影=S△ODE-S扇形ODB計(jì)算可得答案.(3)先證Rt△DFB∽R(shí)t△DCB得,據(jù)此求得BF的長(zhǎng),再證△EFB∽△EDO得,據(jù)此求得EB的長(zhǎng),繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽R(shí)t△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點(diǎn)睛:本題主要考查圓的綜合問題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、中位線定理、三角函數(shù)的應(yīng)用及相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).21、(1)證明見解析(2)1【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對(duì)應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結(jié)合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經(jīng)過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點(diǎn)睛】本題考查了切線的性質(zhì)定理以及判定定理,以及直角三角形三角函數(shù)的應(yīng)用,證明圓的切線的問題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問題.22、(1)7、30%;(2)補(bǔ)圖見解析;(3)105人;(3)
【解析】試題分析:(1)先根據(jù)繪畫類人數(shù)及其百分比求得總?cè)藬?shù),繼而可得答案;(2)根據(jù)(1)中所求數(shù)據(jù)即可補(bǔ)全條形圖;(3)總?cè)藬?shù)乘以棋類活動(dòng)的百分比可得;(4)利用樹狀圖法列舉出所有可能的結(jié)果,然后利用概率公式即可求解.試題解析:解:(1)本次調(diào)查的總?cè)藬?shù)為10÷25%=40(人),∴參加音樂類活動(dòng)的學(xué)生人數(shù)為40×17.5%=7人,參加球類活動(dòng)的人數(shù)的百分比為×100%=30%,故答案為7,30%;(2)補(bǔ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆蟲涂色課程設(shè)計(jì)
- 拒絕浪費(fèi)糧食的宣傳橫幅標(biāo)語(125句)
- 護(hù)士一周工作總結(jié)模板
- 文化基礎(chǔ)課程設(shè)計(jì)
- 心痛感言30句范文
- 拒絕浪費(fèi)糧食倡議書范文(7篇)
- 化工課程設(shè)計(jì)精餾塔序言
- 奧創(chuàng)中心小班課程設(shè)計(jì)
- 2024年標(biāo)準(zhǔn)化合作社運(yùn)營合同模板版B版
- 2025年山東淄博沂源縣教體系統(tǒng)事業(yè)單位緊缺教師招聘30人歷年管理單位筆試遴選500模擬題附帶答案詳解
- (正式版)JBT 9229-2024 剪叉式升降工作平臺(tái)
- 物業(yè)工程維修作業(yè)培訓(xùn)課件
- 數(shù)值分析上機(jī)題(matlab版)(東南大學(xué))
- 煤化工未來發(fā)展趨勢(shì)報(bào)告
- 安置幫教業(yè)務(wù)培訓(xùn)
- 天津市部分重點(diǎn)中學(xué)高一上學(xué)期期末考試數(shù)學(xué)試卷及答案(共四套)
- 鎮(zhèn)江市2023-2024學(xué)年九年級(jí)上學(xué)期期末英語試卷(含答案解析)
- 醫(yī)院禁毒行動(dòng)方案
- 學(xué)生公寓物業(yè)服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 水上交通安全生產(chǎn)培訓(xùn)
- 加強(qiáng)老舊小區(qū)物業(yè)管理的思考
評(píng)論
0/150
提交評(píng)論