河北省邢臺市英華集團初中部2024年中考聯(lián)考數(shù)學試卷含解析_第1頁
河北省邢臺市英華集團初中部2024年中考聯(lián)考數(shù)學試卷含解析_第2頁
河北省邢臺市英華集團初中部2024年中考聯(lián)考數(shù)學試卷含解析_第3頁
河北省邢臺市英華集團初中部2024年中考聯(lián)考數(shù)學試卷含解析_第4頁
河北省邢臺市英華集團初中部2024年中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省邢臺市英華集團初中部2024年中考聯(lián)考數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.102.4的平方根是()A.4 B.±4 C.±2 D.23.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-24.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應相等的兩個三角形全等D.有一邊對應相等的兩個等邊三角形全等5.-的立方根是()A.-8 B.-4 C.-2 D.不存在6.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學記數(shù)法表示應為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×1037.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.8.下列計算正確的是A.a(chǎn)2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-49.如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:310.如圖,在數(shù)軸上有點O,A,B,C對應的數(shù)分別是0,a,b,c,AO=2,OB=1,BC=2,則下列結(jié)論正確的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.當x=_________時,分式的值為零.12.若,則=.13.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標為,線段的長為8,則拋物線的對稱軸為直線________________.14.點(1,–2)關于坐標原點O的對稱點坐標是_____.15.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,則∠DAE=______.16.如果關于x的方程x2+2ax﹣b2+2=0有兩個相等的實數(shù)根,且常數(shù)a與b互為倒數(shù),那么a+b=_____.三、解答題(共8題,共72分)17.(8分)矩形AOBC中,OB=4,OA=1.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標系.F是BC邊上一個動點(不與B,C重合),過點F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點E。當點F運動到邊BC的中點時,求點E的坐標;連接EF,求∠EFC的正切值;如圖2,將△CEF沿EF折疊,點C恰好落在邊OB上的點G處,求此時反比例函數(shù)的解析式.18.(8分)如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)求證:△AEF是等腰直角三角形;(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當點E在線段BC上時,連接AE,求證:AF=AE;(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.19.(8分)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,求∠CMA的度數(shù)______.20.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.21.(8分)某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共60件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料4千克,乙種材料1千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元.(1)甲、乙兩種材料每千克分別是多少元?(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不能超過10000元,且生產(chǎn)B產(chǎn)品要超過38件,問有哪幾種符合條件的生產(chǎn)方案?(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費40元,若生產(chǎn)一件B產(chǎn)品需加工費50元,應選擇哪種生產(chǎn)方案,才能使生產(chǎn)這批產(chǎn)品的成本最低?請直接寫出方案.22.(10分)先化簡,再求值:(),其中=23.(12分)某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:根據(jù)圖中提供的信息,解答下列問題:(1)補全頻數(shù)分布直方圖(2)求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(shù)(3)請估計該校3000名學生中每周的課外閱讀時間不小于6小時的人數(shù)24.為響應“植樹造林、造福后人”的號召,某班組織部分同學義務植樹棵,由于同學們的積極參與,實際參加的人數(shù)比原計劃增加了,結(jié)果每人比原計劃少栽了棵,問實際有多少人參加了這次植樹活動?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,

因為BC∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點睛:

本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.2、C【解析】

根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.3、D【解析】

把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù),而平移時,頂點的縱坐標不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點的橫縱坐標互為相反數(shù).∵左、右平移時,頂點的縱坐標不變,∴平移后的頂點坐標為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標不變;左右平移時,點的縱坐標不變.同時考查了二次函數(shù)的性質(zhì),正比例函數(shù)y=﹣x的圖象上點的坐標特征.4、C【解析】解:A.外角為120°,則相鄰的內(nèi)角為60°,根據(jù)有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當兩個三角形中兩邊及一角對應相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.5、C【解析】分析:首先求出的值,然后根據(jù)立方根的計算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點睛:本題主要考查的是算術平方根與立方根,屬于基礎題型.理解算術平方根與立方根的含義是解決本題的關鍵.6、B【解析】試題分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).將13000用科學記數(shù)法表示為:1.3×1.故選B.考點:科學記數(shù)法—表示較大的數(shù)7、C【解析】

根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應邊應該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應關系是關鍵.8、B【解析】【分析】根據(jù)同底數(shù)冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關鍵.9、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點睛】本題考查的是圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.10、C【解析】

根據(jù)AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,進行判斷即可解答.【詳解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|(zhì)c|,ab<0,,,故選:C.【點睛】此題考查有理數(shù)的大小比較以及絕對值,解題的關鍵結(jié)合數(shù)軸求解.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】

根據(jù)若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關鍵.12、1.【解析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點:二次根式有意義的條件.13、或x=-1【解析】

由點A的坐標及AB的長度可得出點B的坐標,由拋物線的對稱性可求出拋物線的對稱軸.【詳解】∵點A的坐標為(-2,0),線段AB的長為8,∴點B的坐標為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.【點睛】本題考查了拋物線與x軸的交點以及二次函數(shù)的性質(zhì),由拋物線與x軸的交點坐標找出拋物線的對稱軸是解題的關鍵.14、(-1,2)【解析】

根據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),

故答案為:(-1,2).【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規(guī)律.15、10°【解析】

根據(jù)線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數(shù)即可得到答案.【詳解】∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°【點睛】本題主要考查對等腰三角形的性質(zhì),三角形的內(nèi)角和定理,線段的垂直平分線的性質(zhì)等知識點的理解和掌握,能綜合運用這些性質(zhì)進行計算是解此題的關鍵.16、±1.【解析】

根據(jù)根的判別式求出△=0,求出a1+b1=1,根據(jù)完全平方公式求出即可.【詳解】解:∵關于x的方程x1+1ax-b1+1=0有兩個相等的實數(shù)根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常數(shù)a與b互為倒數(shù),∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案為±1.【點睛】本題考查了根的判別式和解高次方程,能得出等式a1+b1=1和ab=1是解此題的關鍵.三、解答題(共8題,共72分)17、(1)E(2,1);(2);(1).【解析】

(1)先確定出點C坐標,進而得出點F坐標,即可得出結(jié)論;(2)先確定出點F的橫坐標,進而表示出點F的坐標,得出CF,同理表示出CE,即可得出結(jié)論;(1)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.【詳解】(1)∵OA=1,OB=4,∴B(4,0),C(4,1),∵F是BC的中點,∴F(4,),∵F在反比例y=函數(shù)圖象上,∴k=4×=6,∴反比例函數(shù)的解析式為y=,∵E點的坐標為1,∴E(2,1);(2)∵F點的橫坐標為4,∴F(4,),∴CF=BC﹣BF=1﹣=∵E的縱坐標為1,∴E(,1),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC=,(1)如圖,由(2)知,CF=,CE=,,過點E作EH⊥OB于H,∴EH=OA=1,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴,∴,∴BG=,在Rt△FBG中,F(xiàn)G2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函數(shù)解析式為y=.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,中點坐標公式,相似三角形的判定和性質(zhì),銳角三角函數(shù),求出CE:CF是解本題的關鍵.18、(1)證明見解析;(2)證明見解析;(3)4.【解析】試題分析:(1)依據(jù)AE=EF,∠DEC=∠AEF=90°,即可證明△AEF是等腰直角三角形;(2)連接EF,DF交BC于K,先證明△EKF≌△EDA,再證明△AEF是等腰直角三角形即可得出結(jié)論;(3)當AD=AC=AB時,四邊形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.試題解析:解:(1)如圖1.∵四邊形ABFD是平行四邊形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如圖2,連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖3,當AD=AC=AB時,四邊形ABFD是菱形,設AE交CD于H,依據(jù)AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.點睛:本題屬于四邊形綜合題,主要考查了全等三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、平行四邊形的性質(zhì)、菱形的性質(zhì)以及勾股定理等知識,解題的關鍵是熟練掌握全等三角形的判定和性質(zhì),尋找全等的條件是解題的難點.19、∠CMA=35°.【解析】

根據(jù)兩直線平行,同旁內(nèi)角互補得出,再根據(jù)是的平分線,即可得出的度數(shù),再由兩直線平行,內(nèi)錯角相等即可得出結(jié)論.【詳解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分線,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【點睛】本題考查了角平分線的作法和意義,平行線的性質(zhì)等知識解決問題.解題時注意:兩直線平行,內(nèi)錯角相等.20、(1)見解析;(2)2π.【解析】

證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.21、(1)甲種材料每千克25元,乙種材料每千克35元.(2)共有四種方案;(3)生產(chǎn)A產(chǎn)品21件,B產(chǎn)品39件成本最低.【解析】試題分析:(1)、首先設甲種材料每千克x元,乙種材料每千克y元,根據(jù)題意列出二元一次方程組得出答案;(2)、設生產(chǎn)B產(chǎn)品a件,則A產(chǎn)品(60-a)件,根據(jù)題意列出不等式組,然后求出a的取值范圍,得出方案;得出生產(chǎn)成本w與a的函數(shù)關系式,根據(jù)函數(shù)的增減性得出答案.試題解析:(1)設甲種材料每千克x元,乙種材料每千克y元,依題意得:x+y=602y+3y=155解得:答:甲種材料每千克25元,乙種材料

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論