2024屆江蘇省啟東市重點(diǎn)中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)
2024屆江蘇省啟東市重點(diǎn)中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)
2024屆江蘇省啟東市重點(diǎn)中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)
2024屆江蘇省啟東市重點(diǎn)中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)
2024屆江蘇省啟東市重點(diǎn)中學(xué)中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江蘇省啟東市重點(diǎn)中學(xué)中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.2.已知:二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,下列結(jié)論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項(xiàng)有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)3.若正六邊形的邊長(zhǎng)為6,則其外接圓半徑為()A.3 B.3 C.3 D.64.如圖是一個(gè)正方體展開(kāi)圖,把展開(kāi)圖折疊成正方體后,“愛(ài)”字一面相對(duì)面上的字是()A.美 B.麗 C.泗 D.陽(yáng)5.一個(gè)幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.6.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣17.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a28.如圖所示,在長(zhǎng)方形紙片ABCD中,AB=32cm,把長(zhǎng)方形紙片沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,AF=25cm,則AD的長(zhǎng)為()A.16cm B.20cm C.24cm D.28cm9.若二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),則方程的解為()A., B., C., D.,10.下列命題中,真命題是()A.對(duì)角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形C.圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點(diǎn)E,若⊙O的半徑是5,CD=8,則AE=______.12.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對(duì)應(yīng)中線的比為_(kāi)____.13.如圖,校園內(nèi)有一棵與地面垂直的樹(shù),數(shù)學(xué)興趣小組兩次測(cè)量它在地面上的影子,第一次是陽(yáng)光與地面成60°角時(shí),第二次是陽(yáng)光與地面成30°角時(shí),兩次測(cè)量的影長(zhǎng)相差8米,則樹(shù)高_(dá)____________米(結(jié)果保留根號(hào)).14.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動(dòng)點(diǎn),則△CQR的周長(zhǎng)的最小值為_(kāi)________.15.如圖,四邊形ABCD是菱形,∠DAB=50°,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于H,連接OH,則∠DHO=_____度.16.如圖,將一張矩形紙片ABCD沿對(duì)角線BD折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為,再將所折得的圖形沿EF折疊,使得點(diǎn)D和點(diǎn)A重合若,,則折痕EF的長(zhǎng)為_(kāi)_____.三、解答題(共8題,共72分)17.(8分)已知C為線段上一點(diǎn),關(guān)于x的兩個(gè)方程與的解分別為線段的長(zhǎng),當(dāng)時(shí),求線段的長(zhǎng);若C為線段的三等分點(diǎn),求m的值.18.(8分)已知邊長(zhǎng)為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱(chēng)點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.19.(8分)由我國(guó)完全自主設(shè)計(jì)、自主建造的首艘國(guó)產(chǎn)航母于2018年5月成功完成第一次海上試驗(yàn)任務(wù).如圖,航母由西向東航行,到達(dá)處時(shí),測(cè)得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時(shí)間后到達(dá)B處,測(cè)得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長(zhǎng).20.(8分)4件同型號(hào)的產(chǎn)品中,有1件不合格品和3件合格品.從這4件產(chǎn)品中隨機(jī)抽取1件進(jìn)行檢測(cè),求抽到的是不合格品的概率;從這4件產(chǎn)品中隨機(jī)抽取2件進(jìn)行檢測(cè),求抽到的都是合格品的概率;在這4件產(chǎn)品中加入x件合格品后,進(jìn)行如下試驗(yàn):隨機(jī)抽取1件進(jìn)行檢測(cè),然后放回,多次重復(fù)這個(gè)試驗(yàn),通過(guò)大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,則可以推算出x的值大約是多少?21.(8分)給出如下定義:對(duì)于⊙O的弦MN和⊙O外一點(diǎn)P(M,O,N三點(diǎn)不共線,且點(diǎn)P,O在直線MN的異側(cè)),當(dāng)∠MPN+∠MON=180°時(shí),則稱(chēng)點(diǎn)P是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).圖1是點(diǎn)P為線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的示意圖.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1.(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點(diǎn)中,是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是;(2)如圖3,M(0,1),N(,﹣),點(diǎn)D是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn).①∠MDN的大小為;②在第一象限內(nèi)有一點(diǎn)E(m,m),點(diǎn)E是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn),判斷△MNE的形狀,并直接寫(xiě)出點(diǎn)E的坐標(biāo);③點(diǎn)F在直線y=﹣x+2上,當(dāng)∠MFN≥∠MDN時(shí),求點(diǎn)F的橫坐標(biāo)x的取值范圍.22.(10分)(1)如圖1,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點(diǎn)E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點(diǎn)M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎(chǔ)上,若AB=m,BC=n,其他條件不變,請(qǐng)直接寫(xiě)出AE與BF的數(shù)量關(guān)系;.23.(12分)如圖,在△ABC中,∠A=45°,以AB為直徑的⊙O經(jīng)過(guò)AC的中點(diǎn)D,E為⊙O上的一點(diǎn),連接DE,BE,DE與AB交于點(diǎn)F.求證:BC為⊙O的切線;若F為OA的中點(diǎn),⊙O的半徑為2,求BE的長(zhǎng).24.如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時(shí),△AEF的面積最大?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計(jì)算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點(diǎn)睛】本題主要考查扇形面積的計(jì)算和幾何概率問(wèn)題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.2、B【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)判斷即可.【詳解】①由拋物線開(kāi)口向上知:a>1;拋物線與y軸的負(fù)半軸相交知c<1;對(duì)稱(chēng)軸在y軸的右側(cè)知:b>1;所以:abc<1,故①錯(cuò)誤;②對(duì)稱(chēng)軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯(cuò)誤;③由拋物線的性質(zhì)可知,當(dāng)x=-1時(shí),y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因?yàn)閽佄锞€的對(duì)稱(chēng)軸為x=1,且與x軸的一個(gè)交點(diǎn)的橫坐標(biāo)為1,所以另一個(gè)交點(diǎn)的橫坐標(biāo)為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當(dāng)x=2時(shí),y>1,即:4a+2b+c>1,故⑤正確.故正確選項(xiàng)有③④⑤,故選B.【點(diǎn)睛】本題二次函數(shù)的圖象與性質(zhì),牢記公式和數(shù)形結(jié)合是解題的關(guān)鍵.3、D【解析】

連接正六邊形的中心和各頂點(diǎn),得到六個(gè)全等的正三角形,于是可知正六邊形的邊長(zhǎng)等于正三角形的邊長(zhǎng),為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長(zhǎng),即其外接圓半徑為1.故選D.【點(diǎn)睛】本題考查了正六邊形的外接圓的知識(shí),解題的關(guān)鍵是畫(huà)出圖形,找出線段之間的關(guān)系.4、D【解析】

正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)作答.【詳解】解:正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,“愛(ài)”字一面相對(duì)面上的字是“陽(yáng)”;故本題答案為:D.【點(diǎn)睛】本題主要考查了正方體相對(duì)兩個(gè)面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.5、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺(tái),下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點(diǎn):由三視圖判斷幾何體.視頻6、A【解析】

根據(jù)絕對(duì)值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是絕對(duì)值和數(shù)的0次冪,解題關(guān)鍵是熟記數(shù)的0次冪為1.7、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類(lèi)項(xiàng)法則求解.解:A、a3?a2=a3+2=a5,故A錯(cuò)誤;B、(2a)3=8a3,故B錯(cuò)誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯(cuò)誤;D、3a2﹣a2=2a2,故D正確.故選D.點(diǎn)評(píng):本題考查了完全平方公式,合并同類(lèi)項(xiàng)法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.8、C【解析】

首先根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)證明∠EAC=∠DCA,根據(jù)等角對(duì)等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長(zhǎng)方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長(zhǎng)方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點(diǎn)睛】本題考查了折疊的性質(zhì)以及勾股定理,在折疊的過(guò)程中注意到相等的角以及相等的線段是關(guān)鍵.9、C【解析】

∵二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),∴方程一定有一個(gè)解為:x=﹣1,∵拋物線的對(duì)稱(chēng)軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為:(3,0),∴方程的解為:,.故選C.考點(diǎn):拋物線與x軸的交點(diǎn).10、C【解析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯(cuò)誤,例如對(duì)角線互相垂直的等腰梯形;B、錯(cuò)誤,等腰梯形是軸對(duì)稱(chēng)圖形不是中心對(duì)稱(chēng)圖形;C、正確,符合切線的性質(zhì);D、錯(cuò)誤,垂直于同一直線的兩條直線平行.故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解析】

連接OC,由垂徑定理知,點(diǎn)E是CD的中點(diǎn),在直角△OCE中,利用勾股定理即可得到關(guān)于半徑的方程,求得圓半徑即可【詳解】設(shè)AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點(diǎn)睛】此題考查垂徑定理和勾股定理,,解題的關(guān)鍵是利用勾股定理求關(guān)于半徑的方程.12、3:4【解析】由于相似三角形的相似比等于對(duì)應(yīng)中線的比,∴△ABC與△DEF對(duì)應(yīng)中線的比為3:4故答案為3:4.13、【解析】設(shè)出樹(shù)高,利用所給角的正切值分別表示出兩次影子的長(zhǎng),然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測(cè)量的影長(zhǎng)相差8米,∴=8,∴x=4,故答案為4.“點(diǎn)睛”本題考查了平行投影的應(yīng)用,太陽(yáng)光線下物體影子的長(zhǎng)短不僅與物體有關(guān),而且與時(shí)間有關(guān),不同時(shí)間隨著光線方向的變化,影子的方向也在變化,解此類(lèi)題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.14、【解析】

作C關(guān)于AB的對(duì)稱(chēng)點(diǎn)G,關(guān)于AD的對(duì)稱(chēng)點(diǎn)F,可得三角形CQR的周長(zhǎng)=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長(zhǎng),從而求出△CQR的周長(zhǎng)的最小值.【詳解】解:作C關(guān)于AB的對(duì)稱(chēng)點(diǎn)G,關(guān)于AD的對(duì)稱(chēng)點(diǎn)F,則三角形CQR的周長(zhǎng)=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點(diǎn)共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長(zhǎng)的最小值為.【點(diǎn)睛】本題考查了軸對(duì)稱(chēng)問(wèn)題,關(guān)鍵是根據(jù)軸對(duì)稱(chēng)的性質(zhì)和兩點(diǎn)之間線段最短解答.15、1.【解析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點(diǎn):菱形的性質(zhì).16、【解析】

首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長(zhǎng),又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長(zhǎng),又由中位線的性質(zhì)求得EM的長(zhǎng),則問(wèn)題得解【詳解】如圖,設(shè)與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設(shè),則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點(diǎn)睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識(shí),綜合性較強(qiáng),有一定的難度,解題時(shí)要注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.三、解答題(共8題,共72分)17、(1);(2)或1.【解析】

(1)把m=2代入兩個(gè)方程,解方程即可求出AC、BC的長(zhǎng),由C為線段上一點(diǎn)即可得AB的長(zhǎng);(2)分別解兩個(gè)方程可得,,根據(jù)為線段的三等分點(diǎn)分別討論為線段靠近點(diǎn)的三等分點(diǎn)和為線段靠近點(diǎn)的三等分點(diǎn)兩種情況,列關(guān)于m的方程即可求出m的值.【詳解】(1)當(dāng)時(shí),有,,由方程,解得,即.由方程,解得,即.因?yàn)闉榫€段上一點(diǎn),所以.(2)解方程,得,即.解方程,得,即.①當(dāng)為線段靠近點(diǎn)的三等分點(diǎn)時(shí),則,即,解得.②當(dāng)為線段靠近點(diǎn)的三等分點(diǎn)時(shí),則,即,解得.綜上可得,或1.【點(diǎn)睛】本題考查一元一次方程的幾何應(yīng)用,注意討論C點(diǎn)的位置,避免漏解是解題關(guān)鍵.18、(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),由此畫(huà)出圖形即可判斷;(2)因?yàn)镋是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),因?yàn)镋在直線上,推出點(diǎn)E在線段FG上,求出點(diǎn)F、G的橫坐標(biāo),再根據(jù)對(duì)稱(chēng)性即可解決問(wèn)題;(3)因?yàn)榫€段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,分兩種情形:①如圖3中,MN與小⊙Q相切于點(diǎn)F,求出此時(shí)點(diǎn)Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點(diǎn)Q的橫坐標(biāo)即可解決問(wèn)題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),∵點(diǎn)E在直線上,∴點(diǎn)E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對(duì)稱(chēng)性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,①M(fèi)N與小⊙Q相切于點(diǎn)F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點(diǎn)睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)尋找特殊位置解決數(shù)學(xué)問(wèn)題,屬于中考?jí)狠S題.19、還需要航行的距離的長(zhǎng)為20.4海里.【解析】分析:根據(jù)題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數(shù)得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長(zhǎng)為20.4海里.點(diǎn)睛:此題考查了解直角三角形的應(yīng)用-方向角問(wèn)題,三角函數(shù)的應(yīng)用;求出CD的長(zhǎng)度是解決問(wèn)題的關(guān)鍵.20、(1);(2);(3)x=1.【解析】

(1)用不合格品的數(shù)量除以總量即可求得抽到不合格品的概率;(2)利用獨(dú)立事件同時(shí)發(fā)生的概率等于兩個(gè)獨(dú)立事件單獨(dú)發(fā)生的概率的積即可計(jì)算;(3)根據(jù)頻率估計(jì)出概率,利用概率公式列式計(jì)算即可求得x的值.【詳解】解:(1)∵4件同型號(hào)的產(chǎn)品中,有1件不合格品,∴P(不合格品)=;(2)共有12種情況,抽到的都是合格品的情況有6種,P(抽到的都是合格品)==;(3)∵大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在0.95,∴抽到合格品的概率等于0.95,∴=0.95,解得:x=1.【點(diǎn)睛】本題考查利用頻率估計(jì)概率;概率公式;列表法與樹(shù)狀圖法.21、(1)C;(2)①60;②E(,1);③點(diǎn)F的橫坐標(biāo)x的取值范圍≤xF≤.【解析】

(1)由題意線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是以線段MN的中點(diǎn)為圓心,為半徑的圓上,所以點(diǎn)C滿足條件;

(2)①如圖3-1中,作NH⊥x軸于H.求出∠MON的大小即可解決問(wèn)題;

②如圖3-2中,結(jié)論:△MNE是等邊三角形.由∠MON+∠MEN=180°,推出M、O、N、E四點(diǎn)共圓,可得∠MNE=∠MOE=60°,由此即可解決問(wèn)題;

③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,首先證明點(diǎn)E在直線y=-x+2上,設(shè)直線交⊙O′于E、F,可得F(,),觀察圖形即可解決問(wèn)題;【詳解】(1)由題意線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn)的是以線段MN的中點(diǎn)為圓心,為半徑的圓上,所以點(diǎn)C滿足條件,

故答案為C.

(2)①如圖3-1中,作NH⊥x軸于H.

∵N(,-),

∴tan∠NOH=,

∴∠NOH=30°,

∠MON=90°+30°=120°,

∵點(diǎn)D是線段MN關(guān)于點(diǎn)O的關(guān)聯(lián)點(diǎn),

∴∠MDN+∠MON=180°,

∴∠MDN=60°.

故答案為60°.

②如圖3-2中,結(jié)論:△MNE是等邊三角形.

理由:作EK⊥x軸于K.

∵E(,1),

∴tan∠EOK=,

∴∠EOK=30°,

∴∠MOE=60°,

∵∠MON+∠MEN=180°,

∴M、O、N、E四點(diǎn)共圓,

∴∠MNE=∠MOE=60°,

∵∠MEN=60°,

∴∠MEN=∠MNE=∠NME=60°,

∴△MNE是等邊三角形.③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,

易知E(,1),

∴點(diǎn)E在直線y=-x+2上,設(shè)直線交⊙O′于E、F,可得F(,),

觀察圖象可知滿足條件的點(diǎn)F的橫坐標(biāo)x的取值范圍≤xF≤.【點(diǎn)睛】此題考查一次函數(shù)綜合題,直線與圓的位置關(guān)系,等邊三角形的判定和性質(zhì),銳角三角函數(shù),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考?jí)狠S題.22、(1)證明見(jiàn)解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,AB與BC的關(guān)系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關(guān)系,可得∠ABM與∠BAM的關(guān)系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關(guān)系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質(zhì),可得答案;(2)根據(jù)矩形的性質(zhì)得到∠ABC=∠C,由余角的性質(zhì)得到∠BAM=∠CBF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)結(jié)論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結(jié)論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論