2024屆河北省唐山市路南區(qū)重點(diǎn)名校中考猜題數(shù)學(xué)試卷含解析_第1頁
2024屆河北省唐山市路南區(qū)重點(diǎn)名校中考猜題數(shù)學(xué)試卷含解析_第2頁
2024屆河北省唐山市路南區(qū)重點(diǎn)名校中考猜題數(shù)學(xué)試卷含解析_第3頁
2024屆河北省唐山市路南區(qū)重點(diǎn)名校中考猜題數(shù)學(xué)試卷含解析_第4頁
2024屆河北省唐山市路南區(qū)重點(diǎn)名校中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河北省唐山市路南區(qū)重點(diǎn)名校中考猜題數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在直角坐標(biāo)平面內(nèi),已知點(diǎn)M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.2.下列計(jì)算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣63.一個(gè)圓的內(nèi)接正六邊形的邊長(zhǎng)為2,則該圓的內(nèi)接正方形的邊長(zhǎng)為()A. B.2 C.2 D.44.若一個(gè)正多邊形的每個(gè)內(nèi)角為150°,則這個(gè)正多邊形的邊數(shù)是()A.12 B.11 C.10 D.95.計(jì)算-3-1的結(jié)果是()A.2B.-2C.4D.-46.一個(gè)正方體的平面展開圖如圖所示,將它折成正方體后“建”字對(duì)面是()A.和 B.諧 C.涼 D.山7.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣38.在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,隨機(jī)地摸出一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球.則兩次摸出的小球的標(biāo)號(hào)的和等于6的概率為()A. B. C. D.9.如圖,點(diǎn)A,B在雙曲線y=(x>0)上,點(diǎn)C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.310.如圖,在平行四邊形ABCD中,AE:EB=1:2,E為AB上一點(diǎn),AC與DE相交于點(diǎn)F,S△AEF=3,則S△FCD為()A.6 B.9 C.12 D.2711.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是()A. B. C. D.12.已知點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.計(jì)算:=_____________.14.關(guān)于x的一元二次方程(k-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是_______.15.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_____.16.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______17.如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在y軸上,菱形的兩條對(duì)角線的長(zhǎng)分別是6和4,反比例函數(shù)的圖象經(jīng)過點(diǎn)C,則k的值為.18.如圖,在中,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時(shí),.請(qǐng)將正確結(jié)論的序號(hào)填在橫線上__.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測(cè)得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測(cè)得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,(斜坡的鉛直高度與水平寬度的比),經(jīng)過測(cè)量AB=10米,AE=15米,求點(diǎn)B到地面的距離;求這塊宣傳牌CD的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果保留根號(hào))20.(6分)先化簡(jiǎn),,其中x=.21.(6分)在△ABC中,∠ACB=45°.點(diǎn)D(與點(diǎn)B、C不重合)為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(1)如果AB=AC.如圖①,且點(diǎn)D在線段BC上運(yùn)動(dòng).試判斷線段CF與BD之間的位置關(guān)系,并證明你的結(jié)論.(2)如果AB≠AC,如圖②,且點(diǎn)D在線段BC上運(yùn)動(dòng).(1)中結(jié)論是否成立,為什么?(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC=4,BC=3,CD=x,求線段CP的長(zhǎng).(用含x的式子表示)22.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點(diǎn),P是AB上的任意一點(diǎn),連接PE,將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點(diǎn),D點(diǎn)作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點(diǎn),求點(diǎn)E所經(jīng)過的路徑弧EQ的長(zhǎng)(結(jié)果保留π);(3)若點(diǎn)Q落在AB或AD邊所在直線上,請(qǐng)直接寫出BP的長(zhǎng).23.(8分)如圖,把兩個(gè)邊長(zhǎng)相等的等邊△ABC和△ACD拼成菱形ABCD,點(diǎn)E、F分別是CB、DC延長(zhǎng)上的動(dòng)點(diǎn),且始終保持BE=CF,連結(jié)AE、AF、EF.求證:AEF是等邊三角形.24.(10分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點(diǎn)D,點(diǎn)E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數(shù);(2)求證:直線ED與⊙O相切.25.(10分)先化簡(jiǎn)分式:(-)÷?,再從-3、-3、2、-2中選一個(gè)你喜歡的數(shù)作為的值代入求值.26.(12分)閱讀下列材料,解答下列問題:材料1.把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個(gè)變形過程,那么多項(xiàng)式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對(duì)于二次三項(xiàng)式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對(duì)于一般的二次三項(xiàng)式,就不能直接應(yīng)用完全平方了,我們可以在二次三項(xiàng)式中先加上一項(xiàng),使其配成完全平方式,再減去這項(xiàng),使整個(gè)式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個(gè)整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數(shù)學(xué)解題中常見的一種思想方法,請(qǐng)你解答下列問題:(1)根據(jù)材料1,把c2﹣6c+8分解因式;(2)結(jié)合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.27.(12分)地球環(huán)境問題已經(jīng)成為我們?nèi)找骊P(guān)注的問題.學(xué)校為了普及生態(tài)環(huán)保知識(shí),提高學(xué)生生態(tài)環(huán)境保護(hù)意識(shí),舉辦了“我參與,我環(huán)?!钡闹R(shí)競(jìng)賽.以下是從初一、初二兩個(gè)年級(jí)隨機(jī)抽取20名同學(xué)的測(cè)試成績(jī)進(jìn)行調(diào)查分析,成績(jī)?nèi)缦拢撼跻唬?688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根據(jù)上面的數(shù)據(jù),將下列表格補(bǔ)充完整;整理、描述數(shù)據(jù):成績(jī)x人數(shù)班級(jí)初一1236初二011018(說明:成績(jī)90分及以上為優(yōu)秀,80~90分為良好,60~80分為合格,60分以下為不合格)分析數(shù)據(jù):年級(jí)平均數(shù)中位數(shù)眾數(shù)初一8488.5初二84.274(2)得出結(jié)論:你認(rèn)為哪個(gè)年級(jí)掌握生態(tài)環(huán)保知識(shí)水平較好并說明理由.(至少從兩個(gè)不同的角度說明推斷的合理性).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

先求出點(diǎn)M到x軸、y軸的距離,再根據(jù)直線和圓的位置關(guān)系得出即可.【詳解】解:∵點(diǎn)M的坐標(biāo)是(4,3),

∴點(diǎn)M到x軸的距離是3,到y(tǒng)軸的距離是4,

∵點(diǎn)M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,

∴r的取值范圍是3<r<4,

故選:D.【點(diǎn)睛】本題考查點(diǎn)的坐標(biāo)和直線與圓的位置關(guān)系,能熟記直線與圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵.2、C【解析】

分別根據(jù)二次根式的定義,乘方的意義,負(fù)指數(shù)冪的意義以及絕對(duì)值的定義解答即可.【詳解】=3,故選項(xiàng)A不合題意;﹣32=﹣9,故選項(xiàng)B不合題意;(﹣3)﹣2=,故選項(xiàng)C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項(xiàng)D不合題意.故選C.【點(diǎn)睛】本題主要考查了二次根式的定義,乘方的定義、負(fù)指數(shù)冪的意義以及絕對(duì)值的定義,熟記定義是解答本題的關(guān)鍵.3、B【解析】

圓內(nèi)接正六邊形的邊長(zhǎng)是1,即圓的半徑是1,則圓的內(nèi)接正方形的對(duì)角線長(zhǎng)是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長(zhǎng)是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長(zhǎng)是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識(shí)點(diǎn):圓內(nèi)接正六邊形的邊長(zhǎng)和圓的半徑相等;圓的內(nèi)接正方形的對(duì)角線長(zhǎng)為圓的直徑解答.4、A【解析】

根據(jù)正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ),得到這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個(gè)正多邊形的每個(gè)內(nèi)角為150°,∴這個(gè)正多邊形的每個(gè)外角=180°﹣150°=30°,∴這個(gè)正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對(duì)應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).5、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.6、D【解析】分析:本題考查了正方體的平面展開圖,對(duì)于正方體的平面展開圖中相對(duì)的面一定相隔一個(gè)小正方形,據(jù)此作答.詳解:對(duì)于正方體的平面展開圖中相對(duì)的面一定相隔一個(gè)小正方形,由圖形可知,與“建”字相對(duì)的字是“山”.故選:D.點(diǎn)睛:注意正方體的空間圖形,從相對(duì)面入手,分析及解答問題.7、A【解析】

方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.8、C【解析】列舉出所有情況,看兩次摸出的小球的標(biāo)號(hào)的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.9、B【解析】【分析】依據(jù)點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.【詳解】點(diǎn)C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負(fù)值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點(diǎn)睛】本題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.10、D【解析】

先根據(jù)AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性質(zhì)即可得出結(jié)論.【詳解】解:∵四邊形ABCD是平行四邊形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故選D.【點(diǎn)睛】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形面積的比等于相似比的平方是解答此題的關(guān)鍵.11、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.12、D【解析】試題分析:反比例函數(shù)y=-的圖象位于二、四象限,在每一象限內(nèi),y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數(shù)圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點(diǎn):反比例函數(shù)的性質(zhì).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】分析:按單項(xiàng)式乘以多項(xiàng)式的法則將括號(hào)去掉,在合并同類項(xiàng)即可.詳解:原式=.故答案為:.點(diǎn)睛:熟記整式乘法和加減法的相關(guān)運(yùn)算法則是正確解答這類題的關(guān)鍵.14、k<2且k≠1【解析】試題解析:∵關(guān)于x的一元二次方程(k-1)x2-2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考點(diǎn):1.根的判別式;2.一元二次方程的定義.15、1【解析】

根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點(diǎn)睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.16、3【解析】如圖,連接BB′,∵△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長(zhǎng)BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點(diǎn).17、-6【解析】

分析:∵菱形的兩條對(duì)角線的長(zhǎng)分別是6和4,∴A(﹣3,2).∵點(diǎn)A在反比例函數(shù)的圖象上,∴,解得k=-6.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?8、①③④【解析】

①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷③;④當(dāng)∠ABC=45°時(shí),∠BCN=45°,進(jìn)而判斷④.【詳解】①∵BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯(cuò)誤;③∵∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點(diǎn)P是BC的中點(diǎn),BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當(dāng)∠ABC=45°時(shí),∵CN⊥AB于點(diǎn)N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點(diǎn),可得BC=PB=PC,故④正確.所以正確的選項(xiàng)有:①③④故答案為①③④【點(diǎn)睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細(xì)分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)2;(2)宣傳牌CD高(20﹣1)m.【解析】試題分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到結(jié)果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如圖,過點(diǎn)B作BF⊥CE,垂足為F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得結(jié)果.試題解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:點(diǎn)B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如圖,過點(diǎn)B作BF⊥CE,垂足為F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:廣告牌CD的高度約為(20﹣1)米.20、【解析】

根據(jù)分式的化簡(jiǎn)方法先通分再約分,然后帶入求值.【詳解】解:當(dāng)時(shí),.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對(duì)分式的化簡(jiǎn)的應(yīng)用,掌握分式的化簡(jiǎn)方法是解題的關(guān)鍵.21、(1)CF與BD位置關(guān)系是垂直,理由見解析;(2)AB≠AC時(shí),CF⊥BD的結(jié)論成立,理由見解析;(3)見解析【解析】

(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可證△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(2)過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,可得出AC=AG,易證:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點(diǎn)P,設(shè)AC=1,BC=3,CD=x,求線段CP的長(zhǎng).考慮點(diǎn)D的位置,分兩種情況去解答.①點(diǎn)D在線段BC上運(yùn)動(dòng),已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易證△AQD∽△DCP,再根據(jù)相似三角形的性質(zhì)求解問題.②點(diǎn)D在線段BC延長(zhǎng)線上運(yùn)動(dòng)時(shí),由∠BCA=15°,可求出AQ=CQ=1,則DQ=1+x.過A作AQ⊥BC交CB延長(zhǎng)線于點(diǎn)Q,則△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根據(jù)相似三角形的性質(zhì)求解問題.【詳解】(1)CF與BD位置關(guān)系是垂直;證明如下:∵AB=AC,∠ACB=15°,∴∠ABC=15°.由正方形ADEF得AD=AF,∵∠DAF=∠BAC=90°,∴∠DAB=∠FAC,∴△DAB≌△FAC(SAS),∴∠ACF=∠ABD.∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)AB≠AC時(shí),CF⊥BD的結(jié)論成立.理由是:過點(diǎn)A作GA⊥AC交BC于點(diǎn)G,∵∠ACB=15°,∴∠AGD=15°,∴AC=AG,同理可證:△GAD≌△CAF∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)過點(diǎn)A作AQ⊥BC交CB的延長(zhǎng)線于點(diǎn)Q,①點(diǎn)D在線段BC上運(yùn)動(dòng)時(shí),∵∠BCA=15°,可求出AQ=CQ=1.∴DQ=1﹣x,△AQD∽△DCP,∴,∴,∴.②點(diǎn)D在線段BC延長(zhǎng)線上運(yùn)動(dòng)時(shí),∵∠BCA=15°,∴AQ=CQ=1,∴DQ=1+x.過A作AQ⊥BC,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,則△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴,∴,∴.【點(diǎn)睛】綜合性題型,解題關(guān)鍵是靈活運(yùn)用所學(xué)全等、相似、正方形等知識(shí)點(diǎn).22、(1)1213;(2)5π;(3)PB的值為10526或【解析】

(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對(duì)應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長(zhǎng),再根據(jù)弧長(zhǎng)計(jì)算公式即可得出結(jié)論;(3)當(dāng)點(diǎn)Q落在直線AB上時(shí),根據(jù)相似三角形的性質(zhì)可得對(duì)應(yīng)邊成比例,即可求出PB的值;當(dāng)點(diǎn)Q在DA的延長(zhǎng)線上時(shí),作PH⊥AD交DA的延長(zhǎng)線于H,延長(zhǎng)HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對(duì)應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長(zhǎng)==5π.(3)如圖3中,當(dāng)點(diǎn)Q落在直線AB上時(shí),∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當(dāng)點(diǎn)Q在DA的延長(zhǎng)線上時(shí),作PH⊥AD交DA的延長(zhǎng)線于H,延長(zhǎng)HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點(diǎn)睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).23、見解析【解析】分析:由等邊三角形的性質(zhì)即可得出∠ABE=∠ACF,由全等三角形的性質(zhì)即可得出結(jié)論.詳解:證明:∵△ABC和△ACD均為等邊三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等邊三角形.點(diǎn)睛:此題是四邊形綜合題,主要考查了等邊三角形的性質(zhì)和全等三角形的判定和性質(zhì),直角三角形的性質(zhì),相似三角形的判定和性質(zhì),解題關(guān)鍵是判斷出△ABE≌△ACF.24、(1)∠DOA=100°;(2)證明見解析.【解析】試題分析:(1)根據(jù)∠CBA=50°,利用圓周角定理即可求得∠DOA的度數(shù);(2)連接OE,利用SSS證明△EAO≌△EDO,根據(jù)全等三角形的性質(zhì)可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論