




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆河南省漯河市郾城區(qū)重點中學中考數(shù)學考前最后一卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°2.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<43.已知點,為是反比例函數(shù)上一點,當時,m的取值范圍是()A. B. C. D.4.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.5.在如圖的計算程序中,y與x之間的函數(shù)關系所對應的圖象大致是()A. B. C. D.6.若代數(shù)式2x2+3x﹣1的值為1,則代數(shù)式4x2+6x﹣1的值為()A.﹣3 B.﹣1 C.1 D.37.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個8.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側面積為()A. B.π C.50 D.50π9.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.10.對于有理數(shù)x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數(shù),等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.1111.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.12.為了增強學生體質,學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在四邊形ABCD中,,AC、BD相交于點E,若,則______.14.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.15.圓錐的底面半徑為4cm,高為5cm,則它的表面積為______cm1.16.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)17.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.18.分解因式8x2y﹣2y=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)直線y1=kx+b與反比例函數(shù)的圖象分別交于點A(m,4)和點B(n,2),與坐標軸分別交于點C和點D.(1)求直線AB的解析式;(2)根據(jù)圖象寫出不等式kx+b﹣≤0的解集;(3)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.20.(6分)小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.求小張騎自行車的速度;求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;求小張與小李相遇時x的值.21.(6分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.22.(8分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.23.(8分)如圖,在4×4的正方形方格中,△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上.填空:∠ABC=°,BC=;判斷△ABC與△DEF是否相似,并證明你的結論.24.(10分)如圖,已知反比例函數(shù)y=k1x與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數(shù)y=k1x的圖象上的兩點,且x1<x2,y25.(10分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達式;乙出發(fā)后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?26.(12分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.27.(12分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)平行線的性質得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.2、C【解析】
先根據(jù)正方形的面積公式求邊長,再根據(jù)無理數(shù)的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數(shù)的理解,會估算無理數(shù)的大小是解題的關鍵.3、A【解析】
直接把n的值代入求出m的取值范圍.【詳解】解:∵點P(m,n),為是反比例函數(shù)y=-圖象上一點,∴當-1≤n<-1時,∴n=-1時,m=1,n=-1時,m=1,則m的取值范圍是:1≤m<1.故選A.【點睛】此題主要考查了反比例函數(shù)圖象上點的坐標性質,正確把n的值代入是解題關鍵.4、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.5、A【解析】函數(shù)→一次函數(shù)的圖像及性質6、D【解析】
由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1計算可得.【詳解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,則4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本題答案為:D.【點睛】本題主要考查代數(shù)式的求值,運用整體代入的思想是解題的關鍵.7、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數(shù)共有3個.故選C.考點:等腰三角形的性質;勾股定理.8、A【解析】
根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【詳解】解:圓錐的側面積=?5?5=.故選A.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.9、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.10、B【解析】
先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數(shù)式表示出a、b.代入2△2求出值.【詳解】由規(guī)定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據(jù)新運算的意義,正確的寫出3△5=25,4△7=28,2△2.11、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.12、B【解析】
在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
利用相似三角形的性質即可求解;【詳解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案為.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是熟練掌握相似三角形的性質.14、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.15、【解析】
利用勾股定理求得圓錐的母線長,則圓錐表面積=底面積+側面積=π×底面半徑的平方+底面周長×母線長÷1.【詳解】底面半徑為4cm,則底面周長=8πcm,底面面積=16πcm1;由勾股定理得,母線長=,圓錐的側面面積,∴它的表面積=(16π+4)cm1=cm1,故答案為:.【點睛】本題考查了有關扇形和圓錐的相關計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:(1)圓錐的母線長等于側面展開圖的扇形半徑;(1)圓錐的底面周長等于側面展開圖的扇形弧長.正確對這兩個關系的記憶是解題的關鍵.16、>【解析】
根據(jù)數(shù)軸可以確定m、n的大小關系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結果.【詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【點睛】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關鍵.17、【解析】
首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.18、2y(2x+1)(2x﹣1)【解析】
首先提取公因式2y,再利用平方差公式分解因式得出答案.【詳解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案為2y(2x+1)(2x-1).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點P的坐標為(2,0)或(﹣3,0).【解析】
(1)將點坐標代入雙曲線中即可求出,最后將點坐標代入直線解析式中即可得出結論;(2)根據(jù)點坐標和圖象即可得出結論;(3)先求出點坐標,進而求出,設出點P坐標,最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結論.【詳解】解:(1)∵點和點在反比例函數(shù)的圖象上,,解得,即把兩點代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當時,的解集為或.(3)由(1)得直線的解析式為,當時,y=6,,,當時,,∴點坐標為.設P點坐標為,由題可以,點在點左側,則由可得①當時,,,解得,故點P坐標為②當時,,,解得,即點P的坐標為因此,點P的坐標為或時,與相似.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質,用方程的思想和分類討論的思想解決問題是解本題的關鍵.20、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】
(1)由圖象看出所需時間.再根據(jù)路程÷時間=速度算出小張騎自行車的速度.
(2)根據(jù)由小張的速度可知:B(10,0),設出一次函數(shù)解析式,用待定系數(shù)法求解即可.(3)求出CD的解析式,列出方程,求解即可.【詳解】解:(1)由題意得:(米/分),答:小張騎自行車的速度是300米/分;(2)由小張的速度可知:B(10,0),設直線AB的解析式為:y=kx+b,把A(6,1200)和B(10,0)代入得:解得:∴小張停留后再出發(fā)時y與x之間的函數(shù)表達式;(3)小李騎摩托車所用的時間:∵C(6,0),D(9,2400),同理得:CD的解析式為:y=800x﹣4800,則答:小張與小李相遇時x的值是分.【點睛】考查一次函數(shù)的應用,考查學生觀察圖象的能力,熟練掌握待定系數(shù)法求一次函數(shù)解析式是解題的關鍵.21、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.22、(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】
(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設出點P的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設點Q的坐標為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q-3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關系式應用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關于對稱軸對稱,且A點的坐標為(-3,0),∴點B的坐標為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標為(0,-3).∴OB=1,OC=3.∴.設點P的坐標為(p,p2+2p-3),則.∵,∴,解得.當時;當時,,∴點P的坐標為(4,21)或(-4,5).②設直線AC的解析式為,將點A,C的坐標代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設點Q的坐標為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.23、(1)(2)△ABC∽△DEF.【解析】
(1)根據(jù)已知條件,結合網(wǎng)格可以求出∠ABC的度數(shù),根據(jù),△ABC和△DEF的頂點都在邊長為1的小正方形的頂點上,利用勾股定理即可求出線段BC的長;
(2)根據(jù)相似三角形的判定定理,夾角相等,對應邊成比例即可證明△ABC與△DEF相似.【詳解】(1)故答案為(2)△ABC∽△DEF.證明:∵在4×4的正方形方格中,∴∠ABC=∠DEF.∵∴∴△ABC∽△DEF.【點睛】考查勾股定理以及相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關鍵.24、(1)k1=1,b=6(1)15(3)點M在第三象限,點N在第一象限【解析】試題分析:(1)把A(1,8)代入y=k1x求得k1=8,把B(-4,m)代入y=k1x求得m=-1,把A(1,8)、B(-4,-1)代入y=k2x+b求得k2試題解析:解:(1)把A(1,8),B(-4,m)分別代入y=k1x∵A(1,8)、B(-4,-1)在y=k∴k2解得,k2(1)設直線y=1x+6與x軸的交點為C,當y=0時,x=-3,∴OC=3∴S△ABC=S△AOC+S△BOC=1(3)點M在第三象限,點N在第一象限.①若x1<x2<0,點M、N在第三象限的分支上,則y1②若0<x1<x2,點M、N在第一象限的分支上,則y1③若x1<0<x2,M在第三象限,點N在第一象限,則y1考點:反比例函數(shù)與一次函數(shù)的交點坐標;用待定系數(shù)法求函數(shù)表達式;反比例函數(shù)的性質.25、(1)60;(2)s=10t-6000;(3)乙出發(fā)5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解析】
(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數(shù)法求一次函數(shù)解析式即可;(3)分兩種情況討論即可;(4)設乙從B步行到C的速度是x米/分鐘,根據(jù)當甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【詳解】(1)甲的速度為60米/分鐘.(2)當20≤t≤1時,設s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發(fā)5分鐘和1分鐘時與甲在途中相遇.(4)設乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、行程問題等知識,解題的關鍵是理解題意,讀懂圖像信息,學會構建一次函數(shù)解決實際問題,屬于中考??碱}型.26、(1)證明見解析;(2)當∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應角相等即可;(2)當∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程勞務大清包合同
- 戶外廣告牌施工合同
- 影視制作公司與演員拍攝合同
- 乳膠漆工程施工合同
- 武漢紡織大學外經(jīng)貿(mào)學院《西方舞蹈史與名作賞析》2023-2024學年第二學期期末試卷
- 西安科技大學高新學院《Vue應用開發(fā)》2023-2024學年第二學期期末試卷
- 煙臺黃金職業(yè)學院《交通運輸安全》2023-2024學年第二學期期末試卷
- 浙大寧波理工學院《匯編語言A》2023-2024學年第二學期期末試卷
- 鄂州職業(yè)大學《計算機輔助設計二維》2023-2024學年第二學期期末試卷
- 滬科版 信息技術 必修 3.2.2 信息作品的制作 教學設計
- 新能源充電樁安全管理與防護
- QCT848-2023拉臂式自裝卸裝置
- 人教版八年級下冊英語默寫(單詞 重點短語 重點句型)含答案
- 歷史類常識考試100題帶答案(能力提升)
- MOOC 研究生學術規(guī)范與學術誠信-南京大學 中國大學慕課答案
- 大學生生涯發(fā)展報告新能源汽車
- JBT 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術規(guī)程
- 護理干預在慢性病管理中的作用
- 托幼托育工作總結
- 2024年河南水利與環(huán)境職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 四肢癱瘓的護理查房
評論
0/150
提交評論