2023-2024學年天津市寶坻區(qū)第二中學中考聯(lián)考數(shù)學試卷含解析_第1頁
2023-2024學年天津市寶坻區(qū)第二中學中考聯(lián)考數(shù)學試卷含解析_第2頁
2023-2024學年天津市寶坻區(qū)第二中學中考聯(lián)考數(shù)學試卷含解析_第3頁
2023-2024學年天津市寶坻區(qū)第二中學中考聯(lián)考數(shù)學試卷含解析_第4頁
2023-2024學年天津市寶坻區(qū)第二中學中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年天津市寶坻區(qū)第二中學中考聯(lián)考數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若二次函數(shù)的圖象經(jīng)過點(﹣1,0),則方程的解為()A., B., C., D.,2.已知拋物線y=x2-2mx-4(m>0)的頂點M關(guān)于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)3.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°4.(2016四川省甘孜州)如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π5.下列計算正確的是()A.a(chǎn)3?a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a(chǎn)+2a=3a6.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.7.若關(guān)于的一元二次方程x(x+1)+ax=0有兩個相等的實數(shù)根,則實數(shù)a的值為()A. B.1 C. D.8.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設(shè)△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關(guān)系的圖像大致為()A. B. C. D.9.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.10.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.2511.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°12.正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是()A.36° B.54° C.72° D.108°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB為⊙0的弦,AB=6,點C是⊙0上的一個動點,且∠ACB=45°,若點M、N分別是AB、BC的中點,則MN長的最大值是______________.14.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________15.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=1.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F(xiàn),則EF長為________.16.已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45o.則圖中陰影部分的面積是____________.17.一個凸邊形的內(nèi)角和為720°,則這個多邊形的邊數(shù)是__________________18.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖是某旅游景點的一處臺階,其中臺階坡面AB和BC的長均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺階改造為直接從A至C的臺階,如果改造后每層臺階的高為22cm,那么改造后的臺階有多少層?(最后一個臺階的高超過15cm且不足22cm時,按一個臺階計算.可能用到的數(shù)據(jù):≈1.414,≈1.732)20.(6分)某初中學校組織400位同學參加義務(wù)植樹活動,每人植樹的棵數(shù)在5至10之間,甲、乙兩位同學分別調(diào)查了30位同學的植樹情況,并將收集的數(shù)據(jù)進行了整理,繪制成統(tǒng)計表分別為表1和表2:表1:甲調(diào)查九年級30位同學植樹情況統(tǒng)計表(單位:棵)每人植樹情況78910人數(shù)36156頻率0.10.20.50.2表2:乙調(diào)查三個年級各10位同學植樹情況統(tǒng)計表(單位:棵)每人植樹情況678910人數(shù)363116頻率0.10.20.10.40.2根據(jù)以上材料回答下列問題:(1)表1中30位同學植樹情況的中位數(shù)是棵;(2)已知表2的最后兩列中有一個錯誤的數(shù)據(jù),這個錯誤的數(shù)據(jù)是,正確的數(shù)據(jù)應(yīng)該是;(3)指出哪位同學所抽取的樣本能更好反映此次植樹活動情況,并用該樣本估計本次活動400位同學一共植樹多少棵?21.(6分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設(shè)每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.22.(8分)如圖1,在等腰△ABC中,AB=AC,點D,E分別為BC,AB的中點,連接AD.在線段AD上任取一點P,連接PB,PE.若BC=4,AD=6,設(shè)PD=x(當點P與點D重合時,x的值為0),PB+PE=y.小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、計算,得到了x與y的幾組值,如下表:x0123456y5.24.24.65.97.69.5說明:補全表格時,相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)(2)建立平面直角坐標系(圖2),描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;(3)求函數(shù)y的最小值(保留一位小數(shù)),此時點P在圖1中的什么位置.23.(8分)如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)24.(10分)為響應(yīng)學校全面推進書香校園建設(shè)的號召,班長李青隨機調(diào)查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(:,:,:,:),根據(jù)圖中信息,解答下列問題:(1)這項工作中被調(diào)查的總?cè)藬?shù)是多少?(2)補全條形統(tǒng)計圖,并求出表示組的扇形統(tǒng)計圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.25.(10分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.類別頻數(shù)(人數(shù))頻率小說0.5戲劇4散文100.25其他6合計1根據(jù)圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.26.(12分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.27.(12分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.2、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質(zhì).3、D【解析】

根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【詳解】∵直線EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故選D.【點睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.4、B【解析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉(zhuǎn)的性質(zhì).5、D【解析】

根據(jù)同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項的運算法則進行計算即可得出正確答案.【詳解】解:A.x4?x4=x4+4=x8≠x16,故該選項錯誤;B.(a3)2=a3×2=a6≠a5,故該選項錯誤;C.(ab2)3=a3b6≠ab6,故該選項錯誤;D.a(chǎn)+2a=(1+2)a=3a,故該選項正確;故選D.考點:1.同底數(shù)冪的乘法;2.積的乘方與冪的乘方;3.合并同類項.6、C【解析】

設(shè)B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點.7、A【解析】【分析】整理成一般式后,根據(jù)方程有兩個相等的實數(shù)根,可得△=0,得到關(guān)于a的方程,解方程即可得.【詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數(shù)根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【點睛】本題考查一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.8、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數(shù)關(guān)系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當0<x≤2,y=x,

當2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.9、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),結(jié)合無理數(shù)的定義進行判斷即可得答案.【詳解】A、π是無限不循環(huán)小數(shù),屬于無理數(shù),故本選項錯誤;B、0是有理數(shù),故本選項正確;C、是無理數(shù),故本選項錯誤;D、是無理數(shù),故本選項錯誤,故選B.【點睛】本題考查了實數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù)是解題的關(guān)鍵.10、C【解析】

先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.11、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質(zhì).12、C【解析】正五邊形繞著它的中心旋轉(zhuǎn)后與它本身重合,最小的旋轉(zhuǎn)角度數(shù)是=72度,故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】

根據(jù)中位線定理得到MN的最大時,AC最大,當AC最大時是直徑,從而求得直徑后就可以求得最大值.【詳解】解:因為點M、N分別是AB、BC的中點,由三角形的中位線可知:MN=AC,所以當AC最大為直徑時,MN最大.這時∠B=90°又因為∠ACB=45°,AB=6解得AC=6MN長的最大值是3.故答案為:3.【點睛】本題考查了三角形的中位線定理、等腰直角三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是了解當什么時候MN的值最大,難度不大.14、取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【解析】

(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.故答案為:取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【點睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的思想思考問題,屬于中考??碱}型.15、6或2.【解析】試題分析:根據(jù)P點的不同位置,此題分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,∵BF=BC=6,∴由勾股定理求得EF=;②點P在AD上時,如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對應(yīng)相等,兩三角形相似),∴對應(yīng)線段成比例:,代入相應(yīng)數(shù)值:,∴EF=2.綜上所述:EF長為6或2.考點:翻折變換(折疊問題).16、(-)cm2【解析】S陰影=S扇形-S△OBD=52-×5×5=.故答案是:.17、1【解析】

設(shè)這個多邊形的邊數(shù)是n,根據(jù)多邊形的內(nèi)角和公式:,列方程計算即可.【詳解】解:設(shè)這個多邊形的邊數(shù)是n根據(jù)多邊形內(nèi)角和公式可得解得.故答案為:1.【點睛】此題考查的是根據(jù)多邊形的內(nèi)角和,求邊數(shù),掌握多邊形內(nèi)角和公式是解決此題的關(guān)鍵.18、1【解析】

根據(jù)等邊三角形的性質(zhì)可得OC=AC,∠ABD=30°,根據(jù)“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據(jù)直角三角形的性質(zhì)可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),熟練運用全等三角形的判定是本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、33層.【解析】

根據(jù)含30度的直角三角形三邊的關(guān)系和等腰直角三角形的性質(zhì)得到BD和CE的長,二者的和乘以100后除以20即可確定臺階的數(shù).【詳解】解:在Rt△ABD中,BD=AB?sin45°=3m,在Rt△BEC中,EC=BC=3m,∴BD+CE=3+3,∵改造后每層臺階的高為22cm,∴改造后的臺階有(3+3)×100÷22≈33(個)答:改造后的臺階有33個.【點睛】本題考查了坡度的概念:斜坡的坡度等于斜坡的鉛直高度與對應(yīng)的水平距離的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三邊的關(guān)系和等腰直角三角形的性質(zhì).20、(1)9;(2)11,12;(3)3360棵【解析】

(1)30位同學的植樹量中第15個、16個數(shù)都是9,即可得到植樹的中位數(shù);(2)根據(jù)頻率相加得1確定頻率正確,計算頻數(shù)即可確定錯誤的數(shù)據(jù)是11,正確的硬是12;(3)樣本數(shù)據(jù)應(yīng)體現(xiàn)機會均等由此得到乙同學所抽取的樣本更好,再根據(jù)部分計算總體的公式即可得到答案.【詳解】(1)表1中30位同學植樹情況的中位數(shù)是9棵,故答案為:9;(2)表2的最后兩列中,錯誤的數(shù)據(jù)是11,正確的數(shù)據(jù)應(yīng)該是30×0.4=12;故答案為:11,12;(3)乙同學所抽取的樣本能更好反映此次植樹活動情況,(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),答:本次活動400位同學一共植樹3360棵.【點睛】此題考查統(tǒng)計的計算,掌握中位數(shù)的計算方法,部分的頻數(shù)的計算方法,依據(jù)樣本計算總體的方法是解題的關(guān)鍵.21、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】

(1)、根據(jù)銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進價-降價,列式即可;(2)、根據(jù)總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(jù)(2)中的相關(guān)關(guān)系方程,判斷方程是否有實數(shù)根即可.【詳解】(1)、設(shè)每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,

故答案為(20+2x),(40-x);(2)、根據(jù)題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應(yīng)用問題,屬于中等難度題型.解決這個問題的關(guān)鍵就是要根據(jù)題意列出方程.22、(1)4.5(2)根據(jù)數(shù)據(jù)畫圖見解析;(3)函數(shù)y的最小值為4.2,線段AD上靠近D點三等分點處.【解析】

(1)取點后測量即可解答;(2)建立坐標系后,描點、連線畫出圖形即可;(3)根據(jù)所畫的圖象可知函數(shù)y的最小值為4.2,此時點P在圖1中的位置為.線段AD上靠近D點三等分點處.【詳解】(1)根據(jù)題意,作圖得,y=4.5故答案為:4.5(2)根據(jù)數(shù)據(jù)畫圖得(3)根據(jù)圖象,函數(shù)y的最小值為4.2,此時點P在圖1中的位置為.線段AD上靠近D點三等分點處.【點睛】本題為動點問題的函數(shù)圖象問題,正確作出圖象,利用數(shù)形結(jié)合思想是解決本題的關(guān)鍵.23、答案見解析【解析】

連接OP,作線段OP的垂直平分線MN交OP于點K,以點K為圓心OK為半徑作⊙K交⊙O于點A,A′,作直線PA,PA′,直線PA,PA′即為所求.【詳解】解:連接OP,作線段OP的垂直平分線MN交OP于點K,以點K為圓心OK為半徑作⊙K交⊙O于點A,A′,作直線PA,PA′,直線PA,PA′即為所求.【點睛】本題考查作圖?復(fù)雜作圖,解題的關(guān)鍵是靈活運用所學知識解決問題.24、(1)50人;(2)補全圖形見解析,表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為108°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總?cè)藬?shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總?cè)藬?shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.詳解:(1)被調(diào)查的總?cè)藬?shù)為19÷38%=50人;(2)C組的人數(shù)為50﹣(15+19+4)=12(人),補全圖形如下:表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為360°×=108°;(3)畫樹狀圖如下,共有12個可能的結(jié)果,恰好選中甲的結(jié)果有6個,∴P(恰好選中甲)=.點睛:本題主要考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖以及概率的計算法則,屬于基礎(chǔ)題型.理解頻數(shù)、頻率與樣本容量之間的關(guān)系是解題的關(guān)鍵.25、(1)41(2)15%(3)【解析】

(1)用散文的頻數(shù)除以其頻率即可求得樣本總數(shù);(2)根據(jù)其他類的頻數(shù)和總?cè)藬?shù)求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.26、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論