湖北宜昌重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
湖北宜昌重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
湖北宜昌重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
湖北宜昌重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
湖北宜昌重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北宜昌重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.已知二次函數(shù),當(dāng)自變量取時,其相應(yīng)的函數(shù)值小于0,則下列結(jié)論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關(guān)系不確定2.圓錐的底面半徑為2,母線長為4,則它的側(cè)面積為()A.8π B.16π

C.4π D.4π3.如圖,在正方形ABCD中,G為CD邊中點(diǎn),連接AG并延長,分別交對角線BD于點(diǎn)F,交BC邊延長線于點(diǎn)E.若FG=2,則AE的長度為()A.6 B.8C.10 D.124.2017年,太原市GDP突破三千億元大關(guān),達(dá)到3382億元,經(jīng)濟(jì)總量比上年增長了426.58億元,達(dá)到近三年來增量的最高水平,數(shù)據(jù)“3382億元”用科學(xué)記數(shù)法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元5.的相反數(shù)是()A. B.2 C. D.6.已知一個多邊形的內(nèi)角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形7.“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達(dá)終點(diǎn)10分鐘D.烏龜追上兔子用了20分鐘8.二次函數(shù)的對稱軸是A.直線 B.直線 C.y軸 D.x軸9.若一個正比例函數(shù)的圖象經(jīng)過A(3,﹣6),B(m,﹣4)兩點(diǎn),則m的值為()A.2 B.8 C.﹣2 D.﹣810.如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)M為BC的中點(diǎn),MN⊥AC于點(diǎn)N,則MN等于()A.?

B.?

C.?

D.?11.如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20m/s和v(m/s),起初甲車在乙車前a(m)處,兩車同時出發(fā),當(dāng)乙車追上甲車時,兩車都停止行駛.設(shè)x(s)后兩車相距y(m),y與x的函數(shù)關(guān)系如圖2所示.有以下結(jié)論:①圖1中a的值為500;②乙車的速度為35m/s;③圖1中線段EF應(yīng)表示為;④圖2中函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)為1.其中所有的正確結(jié)論是()A.①④ B.②③C.①②④ D.①③④12.設(shè)x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果梯形的中位線長為6,一條底邊長為8,那么另一條底邊長等于__________.14.函數(shù)y=1x-1的自變量x的取值范圍是15.如圖所示,一個寬為2cm的刻度尺在圓形光盤上移動,當(dāng)刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點(diǎn)處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.16.計(jì)算=_____.17.若有意義,則x的取值范圍是.18.如圖,以AB為直徑的半圓沿弦BC折疊后,AB與相交于點(diǎn)D.若,則∠B=________°.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)下面是一位同學(xué)的一道作圖題:已知線段a、b、c(如圖),求作線段x,使他的作法如下:(1)以點(diǎn)O為端點(diǎn)畫射線,.(2)在上依次截取,.(3)在上截?。?)聯(lián)結(jié),過點(diǎn)B作,交于點(diǎn)D.所以:線段________就是所求的線段x.①試將結(jié)論補(bǔ)完整②這位同學(xué)作圖的依據(jù)是________③如果,,,試用向量表示向量.20.(6分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.21.(6分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進(jìn)行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.22.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點(diǎn),以BD為直徑作⊙M,⊙M交AB于點(diǎn)Q.當(dāng)⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點(diǎn)P以每秒1個單位長度的速度,從點(diǎn)O沿線段OA向點(diǎn)A運(yùn)動;同時動點(diǎn)D以相同的速度,從點(diǎn)B沿折線B﹣C﹣O向點(diǎn)O運(yùn)動.當(dāng)點(diǎn)P到達(dá)點(diǎn)A時,兩點(diǎn)同時停止運(yùn)動.過點(diǎn)P作直線PE∥OC,與折線O﹣B﹣A交于點(diǎn)E.設(shè)點(diǎn)P運(yùn)動的時間為t(秒).求當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時點(diǎn)E的坐標(biāo).23.(8分)如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對應(yīng)點(diǎn)為A′.(1)若點(diǎn)A′落在矩形的對角線OB上時,OA′的長=;(2)若點(diǎn)A′落在邊AB的垂直平分線上時,求點(diǎn)D的坐標(biāo);(3)若點(diǎn)A′落在邊AO的垂直平分線上時,求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).24.(10分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點(diǎn).分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.25.(10分)如圖,矩形擺放在平面直角坐標(biāo)系中,點(diǎn)在軸上,點(diǎn)在軸上,.(1)求直線的表達(dá)式;(2)若直線與矩形有公共點(diǎn),求的取值范圍;(3)直線與矩形沒有公共點(diǎn),直接寫出的取值范圍.26.(12分)列方程解應(yīng)用題:某景區(qū)一景點(diǎn)要限期完成,甲工程隊(duì)單獨(dú)做可提前一天完成,乙工程隊(duì)獨(dú)做要誤期6天,現(xiàn)由兩工程隊(duì)合做4天后,余下的由乙工程隊(duì)獨(dú)做,正好如期完成,則工程期限為多少天?27.(12分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點(diǎn)作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點(diǎn)坐標(biāo);如圖2,若P點(diǎn)從A點(diǎn)出發(fā)沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當(dāng)點(diǎn)P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點(diǎn)共線,求此時∠APB的度數(shù)及P點(diǎn)坐標(biāo).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

畫出函數(shù)圖象,利用圖象法解決問題即可;【詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設(shè)拋物線與x軸交于點(diǎn)A、B,∴AB<1,∵x取m時,其相應(yīng)的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點(diǎn)A的左側(cè),x=m-1時,y>0,故選B.【點(diǎn)睛】本題考查二次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是學(xué)會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結(jié)合的思想.2、A【解析】

解:底面半徑為2,底面周長=4π,側(cè)面積=×4π×4=8π,故選A.3、D【解析】

根據(jù)正方形的性質(zhì)可得出AB∥CD,進(jìn)而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結(jié)合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì),利用相似三角形的性質(zhì)求出AF的長度是解題的關(guān)鍵.4、D【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】3382億=338200000000=3.382×1.故選:D.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、D【解析】

因?yàn)?+=0,所以-的相反數(shù)是.故選D.6、D【解析】

根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【詳解】設(shè)所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點(diǎn)睛】本題考查根據(jù)多邊形的內(nèi)角和計(jì)算公式求多邊形的邊數(shù),解答時要會根據(jù)公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理.7、D【解析】分析:根據(jù)圖象得出相關(guān)信息,并對各選項(xiàng)一一進(jìn)行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項(xiàng)錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項(xiàng)錯誤;兔子是用60分鐘到達(dá)終點(diǎn),烏龜是用50分鐘到達(dá)終點(diǎn),兔子比烏龜晚到達(dá)終點(diǎn)10分鐘,故C選項(xiàng)錯誤;在比賽20分鐘時,烏龜和兔子都距起點(diǎn)200米,即烏龜追上兔子用了20分鐘,故D選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進(jìn)行判斷是解題的關(guān)鍵.8、C【解析】

根據(jù)頂點(diǎn)式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,找出h即可得出答案.【詳解】解:二次函數(shù)y=x2的對稱軸為y軸.

故選:C.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì),解題關(guān)鍵是頂點(diǎn)式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,頂點(diǎn)坐標(biāo)為(h,k).9、A【解析】試題分析:設(shè)正比例函數(shù)解析式為:y=kx,將點(diǎn)A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函數(shù)解析式為:y=﹣2x,將B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故選A.考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.10、A【解析】

連接AM,根據(jù)等腰三角形三線合一的性質(zhì)得到AM⊥BC,根據(jù)勾股定理求得AM的長,再根據(jù)在直角三角形的面積公式即可求得MN的長.【詳解】解:連接AM,

∵AB=AC,點(diǎn)M為BC中點(diǎn),

∴AM⊥CM(三線合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根據(jù)勾股定理得:AM===4,

又S△AMC=MN?AC=AM?MC,∴MN==.

故選A.【點(diǎn)睛】綜合運(yùn)用等腰三角形的三線合一,勾股定理.特別注意結(jié)論:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.11、A【解析】分析:①根據(jù)圖象2得出結(jié)論;②根據(jù)(75,125)可知:75秒時,兩車的距離為125m,列方程可得結(jié)論;③根據(jù)圖1,線段的和與差可表示EF的長;④利用待定系數(shù)法求直線的解析式,令y=0可得結(jié)論.詳解:①y是兩車的距離,所以根據(jù)圖2可知:圖1中a的值為500,此選項(xiàng)正確;②由題意得:75×20+500-75y=125,v=25,則乙車的速度為25m/s,故此選項(xiàng)不正確;③圖1中:EF=a+20x-vx=500+20x-25x=500-5x.故此選項(xiàng)不正確;④設(shè)圖2的解析式為:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,當(dāng)y=0時,-5x+500=0,x=1,即圖2中函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)為1,此選項(xiàng)正確;其中所有的正確結(jié)論是①④;故選A.點(diǎn)睛:本題考查了一次函數(shù)的應(yīng)用,根據(jù)函數(shù)圖象,讀懂題目信息,理解兩車間的距離與時間的關(guān)系是解題的關(guān)鍵.12、C【解析】試題分析:根據(jù)根與系數(shù)的關(guān)系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計(jì)算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4.【解析】

只需根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,進(jìn)行計(jì)算.【詳解】解:根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,則另一條底邊長.故答案為:4【點(diǎn)睛】本題考查梯形中位線,用到的知識點(diǎn)為:梯形的中位線=(上底+下底)14、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>115、5【解析】

本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】解:如圖,設(shè)圓心為O,弦為AB,切點(diǎn)為C.如圖所示.則AB=8cm,CD=2cm.

連接OC,交AB于D點(diǎn).連接OA.

∵尺的對邊平行,光盤與外邊緣相切,

∴OC⊥AB.

∴AD=4cm.

設(shè)半徑為Rcm,則R2=42+(R-2)2,

解得R=5,

∴該光盤的半徑是5cm.

故答案為5【點(diǎn)睛】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學(xué)模型是關(guān)鍵.16、0【解析】分析:先計(jì)算乘方、零指數(shù)冪,再計(jì)算加減可得結(jié)果.詳解:1-1=0故答案為0.點(diǎn)睛:零指數(shù)冪成立的條件是底數(shù)不為0.17、x≥8【解析】略18、18°【解析】

由折疊的性質(zhì)可得∠ABC=∠CBD,根據(jù)在同圓和等圓中,相等的圓周角所對的弧相等可得,再由和半圓的弧度為180°可得的度數(shù)×5=180°,即可求得的度數(shù)為36°,再由同弧所對的圓周角的度數(shù)為其弧度的一半可得∠B=18°.【詳解】解:由折疊的性質(zhì)可得∠ABC=∠CBD,∴,∵,∴的度數(shù)+的度數(shù)+的度數(shù)=180°,即的度數(shù)×5=180°,∴的度數(shù)為36°,∴∠B=18°.故答案為:18.【點(diǎn)睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.還考查了圓弧的度數(shù)與圓周角之間的關(guān)系.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、①CD;②平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例;③.【解析】

①根據(jù)作圖依據(jù)平行線分線段成比例定理求解可得;②根據(jù)“平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例”可得;③先證得,即,從而知.【詳解】①∵,∴OA:AB=OC:CD,∵,,,,∴線段就是所求的線段x,故答案為:②這位同學(xué)作圖的依據(jù)是:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例;故答案為:平行于三角形一邊的直線截其它兩邊(或兩邊的延長線),所得對應(yīng)線段成比例;③∵、,且,∴,∴,即,∴,∴.【點(diǎn)睛】本題主要考查作圖﹣復(fù)雜作圖,解題的關(guān)鍵是熟練掌握平行線分線段成比例定理、相似三角形的判定及向量的計(jì)算.20、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質(zhì)填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),等邊三角形的判定與性質(zhì),重點(diǎn)在于邏輯思維能力的訓(xùn)練.21、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點(diǎn)睛】本題考查了列表法和樹狀圖法,用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、(4)4;(2);(4)點(diǎn)E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點(diǎn)D與點(diǎn)H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點(diǎn)D與點(diǎn)H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當(dāng)∠BDE=90°時,點(diǎn)D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點(diǎn)E的坐標(biāo)為(4,2).②當(dāng)∠BED=90°時,如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點(diǎn)E的坐標(biāo)為().③當(dāng)∠DBE=90°時,如圖4.此時PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點(diǎn)E的坐標(biāo)為(4,2).綜上所述:當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時點(diǎn)E的坐標(biāo)為(4,2)、()、(4,2).點(diǎn)睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識,還考查了分類討論的數(shù)學(xué)思想,有一定的綜合性.23、(1)1;(2)點(diǎn)D(8﹣23,0);(3)點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點(diǎn)B的坐標(biāo)知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點(diǎn)D在OA上和點(diǎn)D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點(diǎn)A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點(diǎn)D(8﹣23,0);(Ⅲ)①如圖3,當(dāng)點(diǎn)D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當(dāng)點(diǎn)D在AO延長線上時,過點(diǎn)A′作x軸的平行線交y軸于點(diǎn)M,延長AB交所作直線于點(diǎn)N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點(diǎn)A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點(diǎn)D的坐標(biāo)為(﹣35﹣1,0).綜上,點(diǎn)D的坐標(biāo)為(35﹣1,0)或(﹣35﹣1,0).點(diǎn)睛:本題主要考查四邊形的綜合問題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點(diǎn).24、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】

(1)根據(jù)反比例函數(shù)y2=的圖象過點(diǎn)A(2,3),利用待定系數(shù)法求出m,進(jìn)而得出B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設(shè)直線y1=kx+b與x軸交于C,求出C點(diǎn)坐標(biāo),根據(jù)S△AOB=S△AOC﹣S△BOC,列式計(jì)算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點(diǎn),∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標(biāo)是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設(shè)直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點(diǎn)坐標(biāo)以及得出S△AOB=S△AOC﹣S△BOC是解題的關(guān)鍵.25、(1);(2);(3)【解析】

(1)由條件可求得A、C的坐標(biāo),利用待定系數(shù)法可求得直線AC的表達(dá)式;(2)結(jié)合圖形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論