版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西北海市合浦縣教育局教研室2024屆中考數(shù)學(xué)仿真試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.12.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.3.下列運算結(jié)果是無理數(shù)的是()A.3× B. C. D.4.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③5.的相反數(shù)是()A.2 B.﹣2 C.4 D.﹣6.如圖,已知數(shù)軸上的點A、B表示的實數(shù)分別為a,b,那么下列等式成立的是()A. B.C. D.7.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.8.如圖是由長方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.9.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐10.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.若方程x2﹣2x﹣1=0的兩根分別為x1,x2,則x1+x2﹣x1x2的值為_____.12.一個不透明的口袋中有四個完全相同的小球,把它們分別標號為,隨機取出一個小球后不放回,再隨機取出一個小球,則兩次取出的小球標號的和等于4的概率是_____.13.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.14.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.15.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______16.如圖,將△AOB以O(shè)為位似中心,擴大得到△COD,其中B(3,0),D(4,0),則△AOB與△COD的相似比為_____.17.已知正比例函數(shù)的圖像經(jīng)過點M(-2,1)、Ax1,y1、Bx2,y三、解答題(共7小題,滿分69分)18.(10分)如圖,在中,,且,,為的中點,于點,連結(jié),.(1)求證:;(2)當為何值時,的值最大?并求此時的值.19.(5分)雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?20.(8分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.21.(10分)如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.22.(10分)如圖,拋物線與x軸相交于A、B兩點,與y軸的交于點C,其中A點的坐標為(﹣3,0),點C的坐標為(0,﹣3),對稱軸為直線x=﹣1.(1)求拋物線的解析式;(2)若點P在拋物線上,且S△POC=4S△BOC,求點P的坐標;(3)設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.23.(12分)如圖,一只螞蟻從點A沿數(shù)軸向右直爬2個單位到達點B,點A表示﹣,設(shè)點B所表示的數(shù)為m.求m的值;求|m﹣1|+(m+6)0的值.24.(14分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)兩個負數(shù)比較大小,絕對值大的負數(shù)反而小,可得答案.【詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯誤;C、0>﹣1,故C錯誤;D、1>﹣1,故D錯誤;故選:A.【點睛】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負數(shù),注意兩個負數(shù)比較大小,絕對值大的負數(shù)反而?。?、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.
∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.3、B【解析】
根據(jù)二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數(shù);B選項:原式=,故B是無理數(shù);C選項:原式==6,故C不是無理數(shù);D選項:原式==12,故D不是無理數(shù)故選B.【點睛】考查二次根式的運算,解題的關(guān)鍵是熟練運用二次根式的運算法則,本題屬于基礎(chǔ)題型.4、D【解析】
①利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.5、A【解析】分析:根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.詳解:的相反數(shù)是,即2.故選A.點睛:本題考查了相反數(shù)的定義,解答本題的關(guān)鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負數(shù),0的相反數(shù)是0,負數(shù)的相反數(shù)是正數(shù).6、B【解析】
根據(jù)圖示,可得:b<0<a,|b|>|a|,據(jù)此判斷即可.【詳解】∵b<0<a,|b|>|a|,
∴a+b<0,
∴|a+b|=-a-b.
故選B.【點睛】此題主要考查了實數(shù)與數(shù)軸的特征和應(yīng)用,以及絕對值的含義和求法,要熟練掌握.7、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定與性質(zhì)、矩形的性質(zhì)、勾股定理等知識點.8、A【解析】分析:根據(jù)從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒有圓心的圓,故選A.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.9、C【解析】分析:根據(jù)一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據(jù)俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.10、C【解析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】根據(jù)題意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案為1.12、【解析】試題解析:畫樹狀圖得:由樹狀圖可知:所有可能情況有12種,其中兩次摸出的小球標號的和等于4的占2種,所以其概率=,故答案為.13、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.14、1【解析】
設(shè)HG=x,根據(jù)相似三角形的性質(zhì)用x表示出KD,根據(jù)矩形面積公式列出二次函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)計算即可.【詳解】解:設(shè)HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【點睛】本題考查的是相似三角形的判定和性質(zhì)、二次函數(shù)的性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.15、﹣1【解析】
根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關(guān)系,列出關(guān)于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【點睛】本題考查了根與系數(shù)的關(guān)系,正確掌握一元二次方程兩根之和,兩個之積與系數(shù)之間的關(guān)系式解題的關(guān)鍵.若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.16、3:1.【解析】∵△AOB與△COD關(guān)于點O成位似圖形,
∴△AOB∽△COD,
則△AOB與△COD的相似比為OB:OD=3:1,
故答案為3:1(或).17、>【解析】分析:根據(jù)正比例函數(shù)的圖象經(jīng)過點M(﹣1,1)可以求得該函數(shù)的解析式,然后根據(jù)正比例函數(shù)的性質(zhì)即可解答本題.詳解:設(shè)該正比例函數(shù)的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數(shù)的圖象經(jīng)過點A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點睛:本題考查了正比例函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用正比例函數(shù)的性質(zhì)解答.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)時,的值最大,【解析】
(1)延長BA、CF交于點G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點是的中點,得出,,則有,可得出,得出,即可得出結(jié)論;(2)設(shè)BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質(zhì)得出當x=1,即BE=1時,CE2-CF2有最大值,,由三角函數(shù)定義即可得出結(jié)果.【詳解】解:(1)證明:如圖,延長交的延長線于點,∵為的中點,∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點是的中點,∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設(shè),則,∵,∴,在中,,在中,,∵,∴,∴,∴當,即時,的值最大,∴.在中,【點睛】本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)等知識;證明三角形全等和等腰三角形是解題的關(guān)鍵.19、(1)捐款增長率為10%.(2)第四天該單位能收到13310元捐款.【解析】
(1)根據(jù)“第一天收到捐款錢數(shù)×(1+每次降價的百分率)2=第三天收到捐款錢數(shù)”,設(shè)出未知數(shù),列方程解答即可.(2)第三天收到捐款錢數(shù)×(1+每次降價的百分率)=第四天收到捐款錢數(shù),依此列式子解答即可.【詳解】(1)設(shè)捐款增長率為x,根據(jù)題意列方程得:,解得x1=0.1,x2=-1.9(不合題意,舍去).答:捐款增長率為10%.(2)12100×(1+10%)=13310元.答:第四天該單位能收到13310元捐款.20、(1)10;(2).【解析】
(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設(shè)OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、等腰三角形的性質(zhì),關(guān)鍵是做出輔助線,找出全等和相似的三角形21、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】
(1)先證明AE=AF,再根據(jù)折疊的性質(zhì)得AE=A′E,AF=A′F,然后根據(jù)菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術(shù)平方根的定義求AE即可.【詳解】(1)四邊形AEA′F為菱形.理由如下:∵AB=AC,∴∠B=∠C,∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∵△AEF沿著直線EF向下翻折,得到△A′EF,∴AE=A′E,AF=A′F,∴AE=A′E=AF=A′F,∴四邊形AEA′F為菱形;(2)∵四邊形AEA′F是正方形,∴∠A=90°,∴△ABC為等腰直角三角形,∴AB=AC=BC=×6=6,∵正方形AEA′F的面積是△ABC的一半,∴AE2=??6?6,∴AE=1.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.22、(1)y=x2+2x﹣3;(2)點P的坐標為(2,21)或(﹣2,5);(3).【解析】
(1)先根據(jù)點A坐標及對稱軸得出點B坐標,再利用待定系數(shù)法求解可得;(2)利用(1)得到的解析式,可設(shè)點P的坐標為(a,a2+2a﹣3),則點P到OC的距離為|a|.然后依據(jù)S△POC=2S△BOC列出關(guān)于a的方程,從而可求得a的值,于是可求得點P的坐標;(3)先求得直線AC的解析式,設(shè)點D的坐標為(x,x2+2x﹣3),則點Q的坐標為(x,﹣x﹣3),然后可得到QD與x的函數(shù)的關(guān)系,最后利用配方法求得QD的最大值即可.【詳解】解:(1)∵拋物線與x軸的交點A(﹣3,0),對稱軸為直線x=﹣1,∴拋物線與x軸的交點B的坐標為(1,0),設(shè)拋物線解析式為y=a(x+3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 樹立規(guī)則為本服務(wù)理念,強化病歷書寫證據(jù)意識課件
- 2025年高考語文常考必刷試題庫300題(含答案)
- 2025年畢節(jié)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年桐城師范高等??茖W(xué)校高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025科學(xué)儀器行業(yè)發(fā)展趨勢與市場前景分析
- 2025養(yǎng)老行業(yè)發(fā)展趨勢與市場前景分析
- 建筑工程可行性研究合同協(xié)議書
- 演員合同書范本
- 經(jīng)典借款合同
- 海運貨物運輸合同范文
- 搞笑小品劇本《大城小事》臺詞完整版
- 人大代表小組活動計劃人大代表活動方案
- Vue3系統(tǒng)入門與項目實戰(zhàn)
- 2024年寧夏回族自治區(qū)中考英語試題含解析
- 光伏發(fā)電項目試驗檢測計劃
- 房屋建筑工程投標方案(技術(shù)方案)
- 靜脈輸液法操作并發(fā)癥的預(yù)防及處理
- 2025年高考語文作文備考:議論文萬能模板
- T-BJCC 1003-2024 首店、首發(fā)活動、首發(fā)中心界定標準
- 外科手術(shù)及護理常規(guī)
- 鐵嶺衛(wèi)生職業(yè)學(xué)院單招參考試題庫(含答案)
評論
0/150
提交評論