2024屆浙江省寧波市明望中學八年級下冊數(shù)學期末聯(lián)考模擬試題含解析_第1頁
2024屆浙江省寧波市明望中學八年級下冊數(shù)學期末聯(lián)考模擬試題含解析_第2頁
2024屆浙江省寧波市明望中學八年級下冊數(shù)學期末聯(lián)考模擬試題含解析_第3頁
2024屆浙江省寧波市明望中學八年級下冊數(shù)學期末聯(lián)考模擬試題含解析_第4頁
2024屆浙江省寧波市明望中學八年級下冊數(shù)學期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省寧波市明望中學八年級下冊數(shù)學期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.邊長為4的等邊三角形的面積是()A.4 B.4 C.4 D.2.下列各組數(shù)中,以它們?yōu)檫呴L的線段不能構成直角三角形的是()A.1,3,2 B.1,2,5C.5,12,13 D.1,2,23.下列式子從左至右的變形,是因式分解的是()A. B. C. D.4.已知四邊形是平行四邊形,下列結(jié)論中不正確的是()A.當時,它是菱形 B.當時,它是菱形C.當時,它是矩形 D.當時,它是正方形5.質(zhì)量檢查員隨機抽取甲、乙、丙、丁四臺機器生產(chǎn)的20個乒乓球的直徑(規(guī)格是直徑4cm),整理后的平均數(shù)和方差如下表,那么這四臺機器生產(chǎn)的乒乓球既標準又穩(wěn)定的是()機器甲乙丙丁平均數(shù)(單位:cm)4.013.983.994.02方差0.032.41.10.3A.甲 B.乙 C.丙 D.丁6.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4407.若=2﹣a,則a的取值范圍是()A.a(chǎn)=2 B.a(chǎn)>2 C.a(chǎn)≥2 D.a(chǎn)≤28.如圖,已知正方形ABCD邊長為1,,,則有下列結(jié)論:①;②點C到EF的距離是2-1;③的周長為2;④,其中正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個9.一個正比例函數(shù)的圖象經(jīng)過(1,﹣3),則它的表達式為()A.y=﹣3x B.y=3x C.y=-3x D.y=﹣10.下列命題中,正確的是()A.平行四邊形的對角線相等B.矩形的對角線互相垂直C.菱形的對角線互相垂直且平分D.菱形的對角線相等二、填空題(每小題3分,共24分)11.如圖,若在象棋盤上建立平面直角坐標系xOy,使“帥”的坐標為(﹣1,﹣2),“馬”的坐標為(2,﹣2),則“兵”的坐標為__.12.如圖,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB邊的垂直平分線,垂足為D,交邊BC于點E,連接AE,則△ACE的周長為________.13.如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD為等邊三角形,點E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點,過點E作EM∥AB,交直線AC于點M,作EN∥AC,交直線AB于點N,則的最大值為_____.14.如圖,直線與軸正半軸交于點,與軸交于點,將沿翻折,使點落在點處,點是線段的中點,射線交線段于點,若為直角三角形,則的值為__________.15.如圖,正方形的邊長為6,點是上的一點,連接并延長交射線于點,將沿直線翻折,點落在點處,的延長線交于點,當時,則的長為________.16.根據(jù)中華人民共和國2017年國民經(jīng)濟和社會發(fā)展統(tǒng)計公報,我國年農(nóng)村貧困人口統(tǒng)計如圖所示根據(jù)統(tǒng)計圖中提供的信息,預估2018年年末全國農(nóng)村貧困人口約為______萬人,你的預估理由是______.17.如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點D在AB上,AD=AC,AF⊥CD交CD于點E,交CB于點F,則CF的長是________________.18.用反證法證明“若,則”時,應假設________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,1),B(0,3),C(0,1).(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C;(2)分別連接AB1,BA1后,求四邊形AB1A1B的面積.20.(6分)為加快城市群的建設與發(fā)展,在A、B兩城市間新建一條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的210km縮短至180km,平均時速要比現(xiàn)行的平均時速快200km,運行時間僅是現(xiàn)行時間的,求建成后的城際鐵路在A、B兩地的運行時間?21.(6分)國家規(guī)定“中小學生每天在校體育活動時間不低于1小時”.為此,某市就“每天在校體育活動時間”的問題隨機抽樣調(diào)查了321名初中學生.根據(jù)調(diào)查結(jié)果將學生每天在校體育活動時間t(小時)分成,,,四組,并繪制了統(tǒng)計圖(部分).組:組:組:組:請根據(jù)上述信息解答下列問題:(1)組的人數(shù)是;(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi);(3)若該市約有12840名初中學生,請你估算其中達到國家規(guī)定體育活動時間的人數(shù)大約有多少.22.(8分)計算(1)計算:(2)分解因式:23.(8分)如圖,在四邊形ABCD中,AD∥BC,∠ADC=90°,BC=8,DC=6,AD=10,動點P從點D出發(fā),沿線段DA的方向以每秒2個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當點P運動到點A時,點Q隨之停止運動,設運動的時間為t(秒)。(1)當點P運動t秒后,AP=____________(用含t的代數(shù)式表示);(2)若四邊形ABQP為平行四邊形,求運動時間t;(3)當t為何值時,△BPQ是以BQ或BP為底邊的等腰三角形;24.(8分)如圖,AE∥BF,AC平分∠BAE,交BF于點C,BD平分∠ABC,交AE于點D,連接CD.(1)求證:四邊形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之間的距離.25.(10分)列方程解應用題:某市今年進行水網(wǎng)升級,1月1日起調(diào)整居民用水價格,每立方米水費上漲,小麗家去年12月的水費是15元,而今年5月的水費則是30元.已知小麗家今年5月的用水量比去年12月的用水量多5m3,求該市今年居民用水的價格.26.(10分)已知一次函數(shù)y=(3-k)x-2k2+18.(1)當k為何值時,它的圖象經(jīng)過原點?(2)當k為何值時,它的圖象經(jīng)過點(0,-2)?(3)當k為何值時,它的圖象平行于直線y=-x?(4)當k為何值時,y隨x增大而減???

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

如圖,根據(jù)等邊三角形三線合一的性質(zhì)可以求得高線AD的長度,根據(jù)BC和AD即可求得三角形的面積.【詳解】解:如圖,∵△ABC是等邊三角形,AD⊥BC,∴BD=DC=2,在Rt△ABD中,AB=4,BD=2,∴AD=,∴S△ABC=BC·AD==4,故選C.【點睛】本題考查了等邊三角形的性質(zhì)、勾股定理有應用、三角形的面積等,熟練掌握相關性質(zhì)以及定理是解題的關鍵.2、D【解析】試題分析:A、∵12+(3)2=22,∴能組成直角三角形;B、∵12+22=(5)2,∴能組成直角三角形;C、∵52+122=132,∴能組成直角三角形;D、∵12+(2)2≠(2)2,∴不能組成直角三角形.故選D.考點:勾股定理的逆定理.3、C【解析】

根據(jù)因式分解的意義進行判斷即可.【詳解】因式分解是指將一個多項式化為幾個整式的積的形式.A.,結(jié)果是單項式乘以單項式,不是因式分解,故選項A錯誤;B.,結(jié)果應為整式因式,故選項B錯誤;C.,正確;D.是整式的乘法運算,不是因式分解,故選項D錯誤.故選:C.【點睛】本題考查了因式分解的意義,解題的關鍵是正確理解因式分解的意義,涉及完全平方公式,本題屬于基礎題型.4、D【解析】

根據(jù)特殊平行四邊形的判定方法判斷即可.【詳解】解:有一組鄰邊相等的平行四邊形是菱形,A選項正確;對角線互相垂直的平行四邊形是菱形,B選項正確;有一個角是直角的平行四邊形是矩形,C選項正確;對角線互相垂直且相等的平行四邊形是正方形,D選項錯誤.故答案為:D【點睛】本題考查了特殊平行四邊形的判定方法,熟練掌握特殊平行四邊形與平行四邊形之間的關系是判定的關鍵.5、A【解析】

先比較出平均數(shù),再根據(jù)方差的意義即可得出答案.【詳解】解:由根據(jù)方差越小越穩(wěn)定可知,甲的質(zhì)量誤差小,故選:A.【點睛】此題考查方差的意義.解題關鍵在于掌握方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.6、A【解析】

根據(jù)題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意找到等量關系進行列方程.7、D【解析】

根據(jù)二次根式有意義的條件分析可得解.【詳解】∵=2-ɑ,∴a-2≤0,即a≤2,故選D.8、C【解析】

先證明Rt△ABE≌Rt△ADF得到∠1=∠2,易得∠1=∠2=∠22.5°,于是可對①進行判斷;連接EF、AC,它們相交于點H,如圖,利用Rt△ABE≌Rt△ADF得到BE=DF,則CE=CF,接著判斷AC垂直平分EF,AH平分∠EAF,于是利用角平分線的性質(zhì)定理得到EB=EH,F(xiàn)D=FH,則可對③④進行判斷;設BE=x,則EF=2x,CE=1-x,利用等腰直角三角形的性質(zhì)得到2x=(1-x),解方程,則可對②進行判斷.【詳解】解:∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=∠B=∠D=90°,

在Rt△ABE和Rt△ADF中,,

∴Rt△ABE≌Rt△ADF(HL),

∴∠1=∠2,

∵∠EAF=45°,

∴∠1=∠2=∠22.5°,所以①正確;

連接EF、AC,它們相交于點H,如圖,

∵Rt△ABE≌Rt△ADF,

∴BE=DF,

而BC=DC,

∴CE=CF,

∵AE=AF,

∴AC垂直平分EF,AH平分∠EAF,

∴EB=EH,F(xiàn)D=FH,

∴BE+DF=EH+HF=EF,所以④錯誤;

∴△ECF的周長=CE+CF+EF=CE+BE+CF+DF=CB+CD=1+1=2,所以③正確;

設BE=x,則EF=2x,CE=1-x,

∵△CEF為等腰直角三角形,

∴EF=CE,即2x=(1-x),解得x=-1,

∴BE=-1,

Rt△ECF中,EH=FH,

∴CH=EF=EH=BE=-1,

∵CH⊥EF,

∴點C到EF的距離是-1,

所以②錯誤;

本題正確的有:①③;

故選:C.【點睛】本題考查四邊形的綜合題:熟練掌握正方形的性質(zhì)和角平分線的性質(zhì)定理.解題的關鍵是證明AC垂直平分EF.9、A【解析】

設正比例函數(shù)解析式為y=kx(k≠0),然后將點(1,-3)代入該函數(shù)解析式即可求得k的值.【詳解】設正比例函數(shù)解析式為y=kx(k≠0).則根據(jù)題意,得﹣3=k,解得k=﹣3∴正比例函數(shù)的解析式為:y=﹣3x故選A.【點睛】本題考查了待定系數(shù)法求正比例函數(shù)解析式.此類題目需靈活運用待定系數(shù)法建立函數(shù)解析式,然后將點的坐標代入解析式,利用方程解決問題.10、C【解析】分析:根據(jù)平行四邊形、矩形、菱形的性質(zhì)分別判斷得出即可.詳解:A.根據(jù)平行四邊形的性質(zhì),平行四邊形的對角線互相平分不相等,故此選項錯誤;B.根據(jù)矩形的性質(zhì),矩形的對角線相等,不互相垂直,故此選項錯誤;C.根據(jù)菱形的性質(zhì),菱形的對角線互相垂直且平分,故此選項正確;D.根據(jù)菱形的性質(zhì),菱形的對角線互相垂直且平分但不相等,故此選項錯誤.故選C.點睛:本題主要考查平行四邊形、矩形、菱形的性質(zhì),熟練掌握相關定理是解題的關鍵.二、填空題(每小題3分,共24分)11、(-3,1)【解析】

直接利用已知點坐標得出原點的位置進而得出答案.【詳解】解:如圖所示:“兵”的坐標為:(-3,1).

故答案為(-3,1).【點睛】本題考查坐標確定位置,正確得出原點位置是解題關鍵.12、1【解析】

由DE是AB邊的垂直平分線,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的長,繼而由△ACE的周長=AC+BC,求得答案.【詳解】解:∵DE是AB邊的垂直平分線,

∴AE=BE,

∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,

∴BC==10,∴△ACE的周長為:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.

故答案為:1.【點睛】本題考查,線段垂直平分線的性質(zhì)以及勾股定理.此題難度不大,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應用.13、【解析】

作輔助線,構建30度的直角三角形將轉(zhuǎn)化為NH,將,即:過A點作AM∥BC,過作交的延長線于點,,由△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點到直線AP的最大值時E在D點時,通過直角三角形性質(zhì)和勾股定理求出DH’即可得到結(jié)論.【詳解】解:過A點作AP∥BC,過作交的延長線于點,,,四邊形是平行四邊形,設,,∵∠ACB=90°,∠CAB=60°,∴∠CAM=90°,∠NAH=30°,中,,∵NE∥AC,NH∥AC,∴E、N、H在同一直線上,,由圖可知:△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點到直線AM距離最大的點在D點,過D點作,垂足為.當在點時,=取最大值.∵∠ACB=90°,∠A=60°,AB=6,,∴AC=3,AB=,四邊形ACGH’是矩形,∴,∵△BCD為等邊三角形,,∴=,∴,∴的最大值為,故答案為.【點睛】本題考查了等邊三角形的性質(zhì)、直角三角形30度角的性質(zhì)、平行四邊形的判定和性質(zhì),有難度.解題關鍵是根據(jù)在直角三角形中,30°角所對的邊等于斜邊的一半對進行轉(zhuǎn)化,使得最大值問題轉(zhuǎn)化為點到直線的距離解答.14、-1【解析】

根據(jù)一次函數(shù)解析式可得B點坐標為(0,),所以得出OB=,再由為直角三角形得出∠ADE為直角,結(jié)合是直角三角形斜邊的中點進一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB為等腰直角三角形,所以OA長度為,進而得出A點坐標,將其代入解析式即可得出k的值.【詳解】由題意得:B點坐標為(0,),∴OB=,∵在直角三角形AOB中,點是線段的中點,∴OD=BD=AD,又∵為直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB為等腰直角三角形,∴OA=OB=,∴A點坐標為(,0),∴,解得k=-1.故答案為:-1.【點睛】本題主要考查了一次函數(shù)與三角形性質(zhì)的綜合運用,熟練掌握相關概念是解題關鍵.15、【解析】

根據(jù)翻折變換的性質(zhì)可得AN=AB,∠BAE=∠NAE,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠BAE=∠F,從而得到∠NAE=∠F,根據(jù)等角對等邊可得AM=FM,設CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,從而得到AM的值,最后根據(jù)NM=AM-AN計算即可得解.【詳解】∵△ABE沿直線AE翻折,點B落在點N處,∴AN=AB=6,∠BAE=∠NAE,∵正方形對邊AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,設CM=x,∵AB=2CF=8,∴CF=3∴DM=6?x,AM=FM=3+x,在Rt△ADM中,由勾股定理得,,即解得x=,所以,AM=3+=,所以,NM=AM?AN=?6=【點睛】本題考查翻折變換,解題關鍵在于熟練掌握勾股定理的性質(zhì).16、1700由統(tǒng)計圖可知,2016~2017減少約1300萬,則2017~2018減少約為1300萬,故2018年農(nóng)村貧困人口約為1700萬.【解析】

根據(jù)統(tǒng)計圖可以得到得到各年相對去年減少的人數(shù),從而可以預估2018年年末全國農(nóng)村貧困人口約為多少萬人,并說明理由.【詳解】解:2018年年末全國農(nóng)村貧困人口約為1700萬人,預估理由:由統(tǒng)計圖可知,2016~2017減少約1300萬,則2017~2018減少約為1300萬,故2018年農(nóng)村貧困人口約為1700萬,故答案為1700、由統(tǒng)計圖可知,2016~2017減少約1300萬,則2017~2018減少約為1300萬,故2018年農(nóng)村貧困人口約為1700萬.【點睛】本題考查用樣本估計總體、條形統(tǒng)計圖,解題的關鍵是明確條形統(tǒng)計圖的特點,從中得到必要的解題信息.17、1.1【解析】

連接DF,由勾股定理求出AB=1,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.1;∴CF=1.1;故答案為1.1.【點睛】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關鍵.18、【解析】

了解反證法證明的方法和步驟,反證法的步驟中,首先假設某命題不成立(即在原命題的條件下,結(jié)論不成立),然后推理出明顯矛盾的結(jié)果,從而下結(jié)論說原假設成立.【詳解】反面是.因此用反證法證明“若|a|<2,那么時,應先假設.故答案為:【點睛】本題考查命題,解題關鍵在于根據(jù)反證法定義即可求得答案.三、解答題(共66分)19、(1)畫圖見解析;(2)1【解析】試題分析:(1)利用網(wǎng)格特點,延長AC到A1使A1C=AC,延長BC到B1使B1C=BC,C點的對應點C1與C點重合,則△A1B1C1滿足條件;(2)四邊形AB1A1B的對角線互相垂直平分,則四邊形AB1A1B為菱形,然后利用菱形的面積公式計算即可.試題解析:(1)如圖,△A1B1C1為所作:(2)四邊形AB1A1B的面積=×6×4=1.考點:作圖-旋轉(zhuǎn)變換;作圖題.20、h.【解析】

設城際鐵路現(xiàn)行速度是xkm/h,則建成后時速是(x+200)xkm/h;現(xiàn)行路程是210km,建成后路程是180km,由時間=,運行時間=現(xiàn)行時間,列方程即可求出x的值,進而可得建成后的城際鐵路在A、B兩地的運行時間.【詳解】設城際鐵路現(xiàn)行速度是xkm/h,則建成后時速是(x+200)xkm/h;根據(jù)題意得:×=,解得:x=70,經(jīng)檢驗:x=70是原方程的解,且符合題意,∴==(h)答:建成后的城際鐵路在A、B兩地的運行時間為h.【點睛】本題考查了分式方程的應用,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.21、(1)141;(2);(3)估算其中達到國家規(guī)定體育活動時間的人數(shù)大約有8040人.【解析】

(1)C組的人數(shù)為總?cè)藬?shù)減去各組人數(shù);(2))根據(jù)中位數(shù)的概念即中位數(shù)應是第161個數(shù)據(jù),即可得出答案;(3)首先計算樣本中達國家規(guī)定體育活動時間的頻率,再進一步估計總體達國家規(guī)定體育活動時間的人數(shù).【詳解】(1)組人數(shù)為(人),故答案為:141;(2)本次調(diào)查數(shù)據(jù)的中位數(shù)是第161個數(shù)據(jù),而第161個數(shù)據(jù)落在組,所以本次調(diào)查數(shù)據(jù)的中位數(shù)落在組內(nèi),故答案為:.(3)估算其中達到國家規(guī)定體育活動時間的人數(shù)大約有(人).【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力同時考查中位數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).22、(1);(2).【解析】

(1)原式第一項利用多項式乘以多項式法則計算,第二項利用多項式除以單項式法則計算即可得到結(jié)果;

(2)原式提取公因式,再利用完全平方公式分解即可.【詳解】(1)原式=2a2?2ab+ab?b2?2a2+ab=?b2;(2)原式=-xy(x2-4xy+4y2)=?xy(x?2y)2.【點睛】本題考查的知識點是整式的混合運算,提公因式法與公式法的綜合運用,解題的關鍵是熟練的掌握整式的混合運算,提公因式法與公式法的綜合運用.23、(1)10-2t;(2)t=2(3)t=74或t=8【解析】

(1)根據(jù)AP=AD-DP即可寫出;(2)當四邊形ABQP為平行四邊形時,AP=BQ,即可列方程進行求解;(3)分兩種情況討論:①若PQ=BQ,在Rt△PQE中,由PQ2=PE2+EQ2,PQ=BQ,將各數(shù)據(jù)代入即可求解;②若PB=PQ,則BQ=2EQ,列方程即可求解.【詳解】(1)∵動點P從點D出發(fā),沿線段DA的方向以每秒2個單位長的速度運動,∴AP=AD-DP=10-2t,故填:10-2t;(2)∵四邊形ABQP為平行四邊形時,∴AP=BQ,∵BQ=BC-CQ=8-t,∴10-2t=8-t,解得t=2,(3)如圖,過點P作PE⊥BC于E,①當∠BQP為頂角時,PQ=BQ,BQ=8-t,PE=CD=6,EQ=CE-CQ=2t-t=t,在Rt△PQM中,由PQ2=PE2+EQ2,又PQ=BQ,∴(8-t)2=62+t2,解得t=7②當∠BPQ為頂角時,則BP=PQ由BQ=2EQ,即8-t=2t解得t=8故t=74或t=83【點睛】此題主要考查四邊形的動點問題,解題的關鍵是熟知等腰三角形的性質(zhì)及勾股定理列出方程進行求解.24、(1)證明見解析;(2).【解析】試題分析:(1)根據(jù)平行線的性質(zhì)得出∠ADB=∠DBC,∠DAC=∠BCA,根據(jù)角平分線定義得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根據(jù)等腰三角形的判定得出AB=BC=AD,根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,即可得出答案;(2)先求出BD的長,求出菱形的面積,即可求出答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論