浙江省嘉興、舟山2024屆數(shù)學八年級下冊期末預測試題含解析_第1頁
浙江省嘉興、舟山2024屆數(shù)學八年級下冊期末預測試題含解析_第2頁
浙江省嘉興、舟山2024屆數(shù)學八年級下冊期末預測試題含解析_第3頁
浙江省嘉興、舟山2024屆數(shù)學八年級下冊期末預測試題含解析_第4頁
浙江省嘉興、舟山2024屆數(shù)學八年級下冊期末預測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省嘉興、舟山2024屆數(shù)學八年級下冊期末預測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,E是正方形ABCD的邊BC的延長線上一點,若CE=CA,AE交CD于F,則∠FAC的度數(shù)是()A.22.5° B.30° C.45° D.67.5°2.用正三角形和正六邊形鑲嵌,若每一個頂點周圍有m個正三角形、n個正六邊形,則m,n滿足的關系式是()A.2m+3n=12 B.m+n=8 C.2m+n=6 D.m+2n=63.要使式子有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣14.如圖,在△ABC中,D、E分別為AC、BC的中點,AF平分∠CAB,交DE于點F,若DF=3,則AC的長為()A. B. C. D.5.一組數(shù)據(jù)3、-2、0、1、4的中位數(shù)是()A.0 B.1 C.-2 D.46.對四邊形ABCD添加以下條件,使之成為平行四邊形,正面的添加不正確的是()A.AB∥CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD=BC D.AC與BD互相平分7.如圖,在平面直角坐示系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的橫坐標分別為1,2,反比例函數(shù)的圖像經(jīng)過A,B兩點,則菱形ABCD的邊長為()A.1 B. C.2 D.8.在△ABC中,D、E分別是BC、AC中點,BF平分∠ABC.交DE于點F.AB=8,BC=6,則EF的長為()A.1 B.2 C.3 D.49.點(1,-6)關于原點對稱的點為()A.(-6,1) B.(-1,6) C.(6,-1) D.(-1,-6)10.如圖,在平行四邊形ABCD中,AB=10,AD=12,將平行四邊形ABCD沿AE翻折后,點B恰好與點C重合,則折痕AE的長為()A.8 B. C. D.611.以下列各組數(shù)據(jù)中的三個數(shù)作為三角形的邊長,其中能構成直角三角形的是A.2,3,4 B.,, C.,,1 D.6,9,1312.若分式的值為0,則x的值是()A.2或﹣2 B.2 C.﹣2 D.0二、填空題(每題4分,共24分)13.計算:(﹣)2=_____.14.長、寬分別為a、b的矩形,它的周長為14,面積為10,則a2b+ab2的值為_____.15.我國古代數(shù)學領域有些研究成果曾位居世界前列,其中“楊輝三角”就是一例.南宋數(shù)學家楊輝(約13世紀)所著的《詳解九章算術》(1261年)一書中,用圖中的三角形解釋二項和的乘方規(guī)律.楊輝三角兩腰上的數(shù)都是1,其余每個數(shù)都為它的上方(左右)兩數(shù)之和,這個三角形給出了(a+b)n(n=1,2,3,4,5)的展開式(按a的次數(shù)由大到小的順序)的系數(shù)規(guī)律.例如,此三角形中第3行的3個數(shù)1,2,1,恰好對應著(a+b)2=a2+2ab+b2展開式中各項的系數(shù):第4行的4個數(shù)1,3,3,1,恰好對應著(a+b)3=a3+3a2b+3ab2+b2展開式中各項的系數(shù),等等.利用上面呈現(xiàn)的規(guī)律填空:(a+b)6=a6+6a5b+________

+20a3b3+15a2b4+________+b616.命題“全等三角形的對應角相等”的逆命題是____________________________這個逆命題是______(填“真”或“假”)17.一組數(shù)據(jù)10,9,10,12,9的中位數(shù)是__________.18.在梯形ABCD中,AD∥BC,如果AD=4,BC=10,E、F分別是邊AB、CD的中點,那么EF=_____.三、解答題(共78分)19.(8分)(2011?南京)小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂?shù)木€路長的2倍.小穎在小亮出發(fā)后50min才乘上纜車,纜車的平均速度為180m/min.設小亮出發(fā)xmin后行走的路程為ym,圖中的折線表示小亮在整個行走過程中y與x的函數(shù)關系.(1)小亮行走的總路程是___________m,他途中休息了_____________min;(2)①當50<x<80時,求y與x的函數(shù)關系式;②當小穎到達纜車終點時,小亮離纜車終點的路程是多少?20.(8分)(1);(2)÷21.(8分)如圖1,已知矩形ABED,點C是邊DE的中點,且AB=2AD.(1)由圖1通過觀察、猜想可以得到線段AC與線段BC的數(shù)量關系為___,位置關系為__;(2)保持圖1中的△ABC固定不變,繞點C旋轉(zhuǎn)DE所在的直線MN到圖2中的位置(當垂線AD、BE在直線MN的同側).試探究線段AD、BE、DE長度之間有什么關系?并給予證明(第一問中得到的猜想結論可以直接在證明中使用);(3)保持圖2中的△ABC固定不變,繼續(xù)繞點C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當垂線段AD、BE在直線MN的異側).試探究線段AD、BE、DE長度之間有___關系.22.(10分)已知,?ABCD中,∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形.(2)如圖1,求AF的長.(3)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止,在運動過程中,點P的速度為每秒1cm,點Q的速度為每秒0.8cm,設運動時間為t秒,若當以A、P、C、Q四點為頂點的四邊形是平行四邊形時,求t的值.23.(10分)某樓盤2018年2月份以每平方米10000元的均價對外銷售,由于炒房客的涌入,房價快速增長,到4月份該樓盤房價漲到了每平方米12100元.5月份開始政府再次出臺房地產(chǎn)調(diào)控政策,逐步控制了房價的連漲趨勢,到6月份該樓盤的房價為每平方米12000元.(1)求3、4兩月房價平均每月增長的百分率;(2)由于房地產(chǎn)調(diào)控政策的出臺,購房者開始持幣觀望,為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對于一次性付清購房款的客戶給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,總價優(yōu)惠10000元,并送五年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,小穎家在6月份打算購買一套100平方米的該樓盤房子,她家該選擇哪種方案更優(yōu)惠?24.(10分)如圖,已知BD是△ABC的角平分線,ED是BC的垂直平分線,∠BAC=90°,AD=1.①求∠C的度數(shù),②求CE的長.25.(12分)因式分解:(1);(2).26.“西瓜足解渴,割裂青瑤膚”,西瓜為夏季之水果,果肉味甜,能降溫去暑;種子含油,可作消遣食品;果皮藥用,有清熱、利尿、降血壓之效.某西瓜批發(fā)商打算購進“黑美人”西瓜與“無籽”西瓜兩個品種的西瓜共70000千克.(1)若購進“黑美人”西瓜的重量不超過“無籽”西瓜重量的倍,求“黑美人”西瓜最多購進多少千克?(2)該批發(fā)商按(1)中“黑美人”西瓜最多重量購進,預計“黑美人”西瓜售價為4元/千克;“無籽”西瓜售價為5元/千克,兩種西瓜全部售完.由于存儲條件的影響,“黑美人”西瓜與“無籽”西瓜分別有與的損壞而不能售出.天氣逐漸炎熱,西瓜熱賣,“黑美人”西瓜的銷售價格上漲,“無籽”西瓜的銷售價格上漲,結果售完之后所得的總銷售額比原計劃下降了3000元,求的值.

參考答案一、選擇題(每題4分,共48分)1、A【解析】

解:∵四邊形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=∠ACB=22.5°.故選A.2、D【解析】

正多邊形的組合能否進行平面鑲嵌,關鍵是看位于同一頂點處的幾個角之和能否為310°.若能,則說明可以進行平面鑲嵌;反之,則說明不能進行平面鑲嵌.【詳解】正多邊形的平面鑲嵌,每一個頂點處的幾個角之和應為310度,而正三角形和正六邊形內(nèi)角分別為10°、120°,根據(jù)題意可知10°×m+120°×n=310°,化簡得到m+2n=1.故選D.【點睛】本題考查了平面鑲嵌的條件,熟練掌握在每一個頂點處的幾個角的和為310度是解題的關鍵.3、C【解析】

根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于1,可得答案.【詳解】要使有意義,得x-1≥1.解得x≥1,故選C.考點:二次根式有意義的條件.4、C【解析】

首先根據(jù)條件D、E分別是AC、BC的中點可得DE∥AB,再求出∠2=∠3,根據(jù)角平分線的定義推知∠1=∠3,則∠1=∠2,所以由等角對等邊可得到DA=DF=AC.【詳解】如圖,∵D、E分別為AC、BC的中點,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=1.故選C.【點睛】本題考查了三角形中位線定理,等腰三角形的判定與性質(zhì).三角形中位線的定理是:三角形的中位線平行于第三邊且等于第三邊的一半.5、B【解析】

將這組數(shù)據(jù)從小到大重新排列后為-2、0、1、3、4;最中間的那個數(shù)1即中位數(shù).【詳解】解:將這組數(shù)據(jù)從小到大重新排列后為-2、0、1、3、4;最中間的那個數(shù)1即中位數(shù).故選:B【點睛】本題考查中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).6、A【解析】

根據(jù)平行四邊形的判定方法依次判定各項后即可解答.【詳解】選項A,AB∥CD,AD=BC,一組對邊平行,另一組對邊相等的四邊形不一定是平行四邊形,選項A不能夠判定四邊形ABCD是平行四邊形;選項B,AB=CD,AB∥CD,一組對邊平行且相等的四邊形是平行四邊形,選項B能夠判定四邊形ABCD是平行四邊形;選項C,AB=CD,AD=BC,兩組對邊分別相等的四邊形是平行四邊形,選項C能夠判定四邊形ABCD是平行四邊形;選項D,AC與BD互相平分,對角線互相平分的四邊形是平行四邊形,選項D能夠判定四邊形ABCD是平行四邊形.故選A.【點睛】本題考查了平行四邊形的判定方法,熟練運用判定方法是解決問題的關鍵.7、B【解析】

過點A作x軸的垂線,與CB的延長線交于點E,根據(jù)A,B兩點的縱坐標分別為1,2,可得出縱坐標,即可求得AE,BE,再根據(jù)勾股定理得出答案.【詳解】解:過點A作x軸的垂線,與CB的延長線交于點E,

∵A,B兩點在反比例函數(shù)的圖象上且橫坐標分別為1,2,

∴A,B縱坐標分別為2,1,

∴AE=1,BE=1,

∴AB==.故選B.【點睛】本題考查菱形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征,熟練掌握菱形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征是解題的關鍵.8、A【解析】

利用中位線定理,得到DE∥AB,根據(jù)平行線的性質(zhì),可得∠EDC=∠ABC,再利用角平分線的性質(zhì)和三角形內(nèi)角外角的關系,得到DF=DB,進而求出DF的長,易求EF的長度.【詳解】∵在△ABC中,D、E分別是BC、AC的中點,AB=8,∴DE∥AB,DE=AB=3.∴∠EDC=∠ABC.∵BF平分∠ABC,∴∠EDC=2∠FBD.∵在△BDF中,∠EDC=∠FBD+∠BFD,∴∠DBF=∠DFB,∴FD=BD=BC=×6=2.∴FE=DE-DF=3-2=3.故選A.【點睛】本題考查了三角形中位線定理和等腰三角形的判定于性質(zhì).三角形的中位線平行于第三邊,當出現(xiàn)角平分線,平行線時,一般可構造等腰三角形,進而利用等腰三角形的性質(zhì)解題.9、B【解析】

根據(jù)平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數(shù),可得答案.【詳解】解:點(1,-6)關于原點對稱的點的坐標是(-1,6);故選:B.【點睛】本題考查了關于原點對稱的點的坐標,關于原點的對稱點,橫縱坐標都變成相反數(shù).10、A【解析】

由點B恰好與點C重合,可知AE垂直平分BC,根據(jù)勾股定理計算AE的長即可.【詳解】解:∵翻折后點B恰好與點C重合,∴AE⊥BC,BE=CE,∵BC=AD=12,∴BE=6,∴AE=,故選:A.【點睛】本題主要考查了平行四邊形的性質(zhì),作圖-軸對稱變換,掌握平行四邊形的性質(zhì),作圖-軸對稱變換是解題的關鍵.11、C【解析】

由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可.【詳解】解:A、,不能構成直角三角形,故本選項錯誤;B、,不能構成直角三角形,故本選項錯誤;C、,能構成直角三角形,故本選項正確;D、,不能構成直角三角形,故本選項錯誤.故選:C.【點睛】本題考查的是勾股定理的逆定理,熟知如果三角形的三邊長a,b,c滿足,那么這個三角形就是直角三角形是解答此題的關鍵.12、A【解析】

直接利用分式的值為零則分子為零進而得出答案.【詳解】∵分式的值為0,∴x1﹣4=0,解得:x=1或﹣1.故選A.【點睛】此題主要考查了分式的值為零的條件,正確把握定義是解題關鍵.二、填空題(每題4分,共24分)13、.【解析】

根據(jù)乘方的定義計算即可.【詳解】(﹣)2=.故答案為:.【點睛】本題考查了乘方的意義,一般地,n個相同的因數(shù)a相乘,即a·a·a·…·a計作an,這種求幾個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪.在an中,a叫做底數(shù),n叫做指數(shù).14、1.【解析】

由周長和面積可分別求得a+b和ab的值,再利用因式分解把所求代數(shù)式可化為ab(a+b),代入可求得答案【詳解】∵長、寬分別為a、b的矩形,它的周長為14,面積為10,

∴a+b==7,ab=10,

∴a2b+ab2=ab(a+b)=10×7=1,

故答案為:1.【點睛】本題主要考查因式分解的應用,把所求代數(shù)式化為ab(a+b)是解題的關鍵.15、15a4b26ab5【解析】

楊輝三角兩腰上的數(shù)都是1,其余每個數(shù)都為它的上方(左右)兩數(shù)之和,所以由第六行的數(shù)字可以得出第七行的數(shù),

結合a的次數(shù)由大到小的順序逐項寫出展開式即可.【詳解】∵第六行6個數(shù)1,5,10,10,5,1,則第七行7個數(shù)為1,6,15,20,15,6,1;則(a+b)7=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab6+b7;【點睛】此題主要考查代數(shù)式的規(guī)律,解題的關鍵是根據(jù)題意找到規(guī)律.16、對應角相等的三角形是全等三角形假【解析】

把原命題的題設和結論作為新命題的結論和題設就得逆命題.【詳解】命題“全等三角形的對應角相等”的逆命題是“對應角相等的三角形是全等三角形”;對應角相等的三角形不一定是全等三角形,這個逆命題是假命題.故答案為(1).對應角相等的三角形是全等三角形(2).假【點睛】本題考核知識點:互逆命題.解題關鍵點:注意命題的形式.17、1【解析】

根據(jù)中位數(shù)的意義,將數(shù)據(jù)排序后找中間位置的數(shù)會中間兩個數(shù)的平均數(shù)即可.【詳解】將數(shù)據(jù)按從小到大排列為:9,9,1,112,處于中間位置也就是第3位的是1,因此中位數(shù)是1,

故答案為:1.【點睛】此題考查中位數(shù)的意義,理解中位數(shù)的意義,掌握中位數(shù)的方法是解題關鍵.18、1.【解析】

根據(jù)梯形中位線定理得到EF=(AD+BC),然后把AD=4,BC=10代入可求出EF的長.【詳解】∵E,F(xiàn)分別是邊AB,CD的中點,∴EF為梯形ABCD的中位線,∴EF=(AD+BC)=(4+10)=1.故答案為1.【點睛】本題考查了梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.三、解答題(共78分)19、解:(1)3600,20;(2)①當50≤x≤80時,設y與x的函數(shù)關系式為y=kx+b,根據(jù)題意,當x=50時,y=1950;當x=80時,y=3600∴解得:∴函數(shù)關系式為:y=55x﹣1.②纜車到山頂?shù)木€路長為3600÷2=11米,纜車到達終點所需時間為11÷180=10分鐘小穎到達纜車終點時,小亮行走的時間為10+50=60分鐘,把x=60代入y=55x﹣1,得y=55×60﹣1=2500∴當小穎到達纜車終點時,小亮離纜車終點的路程是3600﹣2500=1100米.【解析】略20、(1)-45;(2)2+4.【解析】

(1)利用二次根式的乘法運算法則化簡求出即可;(2)利用二次根式的除法運算法則化簡求出即可.【詳解】(1)==-18×=-45;(2)÷=(20-18+4)÷=()÷=2+4.【點睛】本題考查了二次根式的混合運算,正確化簡二次根式是解題的關鍵.21、(1)AC=BC,AC⊥BC,;(2)DE=AD+BE,理由見解析;(3)DE=BE?AD.【解析】

(1)根據(jù)矩形的性質(zhì)及勾股定理,即可證得△ADC≌△BEC,根據(jù)全等三角形的性質(zhì)即可得到結論;(2)通過證明△ACD≌△CBE,根據(jù)全等三角形的性質(zhì)得出即可得線段AD、BE、DE長度之間的關系;(3)通過證明△ACD≌△CBE,根據(jù)全等三角形的性質(zhì)得出即可得線段AD、BE、DE長度之間的關系.【詳解】(1)AC=BC,AC⊥BC,在△ADC與△BEC中,,∴△ADC≌△BEC(SAS),∴AC=BC,∠DCA=∠ECB.∵AB=2AD=DE,DC=CE,∴AD=DC,∴∠DCA=45°,∴∠ECB=45°,∴∠ACB=180°?∠DCA?∠ECB=90°.∴AC⊥BC,故答案為:AC=BC,AC⊥BC;(2)DE=AD+BE.理由如下:∵∠ACD=∠CBE=90°?∠BCE,在△ACD與△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC+CE=BE+AD,即DE=AD+BE.(3)DE=BE?AD.理由如下:∵∠ACD=∠CBE=90°?∠BCE,在△ACD與△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC?CE=BE?AD,即DE=BE?AD,故答案為:DE=BE?AD.【點睛】此題考查全等三角形的判定與性質(zhì),解題關鍵在于掌握判定定理.22、(1)證明見解析;(2)AF=5;(3)以A,C,P,Q四點為頂點的四邊形是平行四邊形時,t=秒.【解析】

(1)先證明四邊形為平行四邊形,再根據(jù)對角線互相垂直平分的四邊形是菱形作出判定;(2)根據(jù)勾股定理即可求的長;(3)分情況討論可知,點在上,點在上時,才能構成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;【詳解】解:(1)四邊形是矩形,,,.垂直平分,.在和中,,,.,四邊形是平行四邊形,,四邊形為菱形.(2)設菱形的邊長,則,在中,,由勾股定理,得,解得:,.(3)由作圖可以知道,點上時,點上,此時,,,四點不可能構成平行四邊形;同理點上時,點或上,也不能構成平行四邊形.只有當點在上,點在上時,才能構成平行四邊形,以,,,四點為頂點的四邊形是平行四邊形時,,點的速度為每秒,點的速度為每秒,運動時間為秒,,,,解得:.以,,,四點為頂點的四邊形是平行四邊形時,秒.【點睛】此題是四邊形綜合題,主要考查了矩形的性質(zhì)的運用,菱形的判定及性質(zhì)的運用,勾股定理的運用,平行四邊形的判定及性質(zhì)的運用,解答時分析清楚動點在不同的位置所構成的圖形的形狀是解答本題的關鍵.23、(1)3、4兩月房價平均每月增長的百分率為10%;(2)選擇第一種方案更優(yōu)惠.【解析】

(1)設3、4兩月房價平均每月增長的百分率為x,根據(jù)2月份及4月份該樓盤房價,即可得出關于x的一元二次方程,解之取其正值即可得出結論;(2)根據(jù)兩種優(yōu)惠方案,分別求出選擇兩種方案優(yōu)惠總額,比較后即可得出結論.【詳解】解:(1)設3、4兩月房價平均每月增長的百分率為x,根據(jù)題意得:10000(1+x)2=12100,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:3、4兩月房價平均每月增長的百分率為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論