2023-2024學年吉林省長春寬城區(qū)四校聯考中考聯考數學試卷含解析_第1頁
2023-2024學年吉林省長春寬城區(qū)四校聯考中考聯考數學試卷含解析_第2頁
2023-2024學年吉林省長春寬城區(qū)四校聯考中考聯考數學試卷含解析_第3頁
2023-2024學年吉林省長春寬城區(qū)四校聯考中考聯考數學試卷含解析_第4頁
2023-2024學年吉林省長春寬城區(qū)四校聯考中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年吉林省長春寬城區(qū)四校聯考中考聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n2.老師隨機抽查了學生讀課外書冊數的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數是()A.5 B.9 C.15 D.223.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數據中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,4.下列所給函數中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+15.在2014年5月崇左市教育局舉行的“經典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數 B.中位數 C.平均數 D.方差6.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習7.若關于x的分式方程的解為正數,則滿足條件的正整數m的值為()A.1,2,3 B.1,2 C.1,3 D.2,38.下列運算正確的是()A.4x+5y=9xy B.(?m)3?m7=m10C.(x3y)5=x8y5 D.a12÷a8=a49.如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數y=(x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是()A. B. C. D.10.估算的運算結果應在(

)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間二、填空題(共7小題,每小題3分,滿分21分)11.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.12.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E為線段AB的中點,D點是射線AC上的一個動點,將△ADE沿線段DE翻折,得到△A′DE,當A′D⊥AB時,則線段AD的長為_____.13.如圖,在平面直角坐標系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.14.太陽半徑約為696000千米,數字696000用科學記數法表示為千米.15.為了綠化校園,30名學生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設男生有x人,女生有y人,根據題意,所列方程組正確的是()A. B. C. D.16.如圖,以點O為圓心的兩個圓中,大圓的弦AB切小圓于點C,OA交小圓于點D,若OD=2,tan∠OAB=,則AB的長是________.17.如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當兩個三角形重疊部分的面積為32時,它移動的距離AA′等于________.三、解答題(共7小題,滿分69分)18.(10分)某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據圖中提供的信息解答下列問題:(1)九(1)班的學生人數為,并把條形統計圖補充完整;(2)扇形統計圖中m=,n=,表示“足球”的扇形的圓心角是度;(3)排球興趣小組4名學生中有3男1女,現在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.19.(5分)已知如圖,直線y=﹣x+4與x軸相交于點A,與直線y=x相交于點P.(1)求點P的坐標;(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時,F的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出:S與a之間的函數關系式(3)若點M在直線OP上,在平面內是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫出Q點坐標。若不存在請說明理由。20.(8分)(問題情境)張老師給愛好學習的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經驗和方法完成下列兩題:[結論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.21.(10分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數.22.(10分)在一次數學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.23.(12分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.24.(14分)如圖,網格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉中心,分別畫出把順時針旋轉,后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設的三邊,,,請證明勾股定理.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數的值越大,根據判斷出它們與對稱軸之間的關系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數的圖象以及性質,開口向上,距離對稱軸越遠的點,對應的函數值越大,2、B【解析】

條形統計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數.通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.用整個圓的面積表示總數(單位1),用圓的扇形面積表示各部分占總數的百分數.【詳解】課外書總人數:6÷25%=24(人),看5冊的人數:24﹣5﹣6﹣4=9(人),故選B.【點睛】本題考查了統計圖與概率,熟練掌握條形統計圖與扇形統計圖是解題的關鍵.3、D【解析】

根據三角形三邊關系可知,不能構成三角形,依此即可作出判定;

B、根據勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構成三角形,故選項錯誤;

B、∵12+12=()2,是等腰直角三角形,故選項錯誤;

C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;

D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.

故選D.4、A【解析】

根據二次函數的性質、一次函數的性質及反比例函數的性質判斷出函數符合y隨x的增大而減小的選項.【詳解】解:A.此函數為一次函數,y隨x的增大而減小,正確;B.此函數為二次函數,當x<0時,y隨x的增大而減小,錯誤;C.此函數為反比例函數,在每個象限,y隨x的增大而減小,錯誤;D.此函數為一次函數,y隨x的增大而增大,錯誤.故選A.【點睛】本題考查了二次函數、一次函數、反比例函數的性質,掌握函數的增減性是解決問題的關鍵.5、B【解析】

解:11人成績的中位數是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數,比較即可.故選B.【點睛】本題考查統計量的選擇,掌握中位數的意義是本題的解題關鍵.6、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.7、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關于x的分式方的解為正數,得m=1,m=3,故選C.考點:分式方程的解.8、D【解析】

各式計算得到結果,即可作出判斷.【詳解】解:A、4x+5y=4x+5y,錯誤;B、(-m)3?m7=-m10,錯誤;C、(x3y)5=x15y5,錯誤;D、a12÷a8=a4,正確;故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.9、C【解析】分析:先求出A點坐標,再根據圖形平移的性質得出A1點的坐標,故可得出反比例函數的解析式,把O1點的橫坐標代入即可得出結論.詳解:∵OB=1,AB⊥OB,點A在函數(x<0)的圖象上,∴當x=?1時,y=2,∴A(?1,2).∵此矩形向右平移3個單位長度到的位置,∴B1(2,0),∴A1(2,2).∵點A1在函數(x>0)的圖象上,∴k=4,∴反比例函數的解析式為,O1(3,0),∵C1O1⊥x軸,∴當x=3時,∴P故選C.點睛:考查反比例函數圖象上點的坐標特征,坐標與圖形變化-平移,解題的關鍵是運用雙曲線方程求出點A的坐標,利用平移的性質求出點A1的坐標.10、D【解析】

解:=,∵2<<3,∴在5到6之間.故選D.【點睛】此題主要考查了估算無理數的大小,正確進行計算是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、或2【解析】

由折疊性質可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進行討論,設出B’F=BF=x,列出比例式方程解方程即可得到結果.【詳解】由折疊性質可知B’F=BF,設B’F=BF=x,故CF=4-x當△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質,解題關鍵在于能夠對兩個相似三角形進行分類討論.12、或.【解析】

①延長A'D交AB于H,則A'H⊥AB,然后根據勾股定理算出AB,推斷出△ADH∽△ABC,即可解答此題②同①的解題思路一樣【詳解】解:分兩種情況:①如圖1所示:設AD=x,延長A'D交AB于H,則A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中點,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折疊的性質得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如圖2所示:設AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;綜上所述,AD的長為或.故答案為或.【點睛】此題考查了勾股定理,三角形相似,關鍵在于做輔助線13、先向右平移2個單位再向下平移2個單位;4【解析】.平移后頂點坐標是(2,-2),利用割補法,把x軸上方陰影部分補到下方,可以得到矩形面積,面積是.14、.【解析】試題分析:696000=6.96×1,故答案為6.96×1.考點:科學記數法—表示較大的數.15、A【解析】

該班男生有x人,女生有y人.根據題意得:,故選D.考點:由實際問題抽象出二元一次方程組.16、8【解析】

如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8【點睛】本題考查切線的性質、垂徑定理、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形,屬于中考??碱}型.17、4或8【解析】

由平移的性質可知陰影部分為平行四邊形,設A′D=x,根據題意陰影部分的面積為(12?x)×x,即x(12?x),當x(12?x)=32時,解得:x=4或x=8,所以AA′=8或AA′=4?!驹斀狻吭OAA′=x,AC與A′B′相交于點E,∵△ACD是正方形ABCD剪開得到的,∴△ACD是等腰直角三角形,∴∠A=45°,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD?AA′=12?x,∵兩個三角形重疊部分的面積為32,∴x(12?x)=32,整理得,x?12x+32=0,解得x=4,x=8,即移動的距離AA′等4或8.【點睛】本題考查正方形和圖形的平移,熟練掌握計算法則是解題關鍵·.三、解答題(共7小題,滿分69分)18、(1)4,補全統計圖見詳解.(2)10;20;72.(3)見詳解.【解析】

(1)根據喜歡籃球的人數與所占的百分比列式計算即可求出學生的總人數,再求出喜歡足球的人數,然后補全統計圖即可;

(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數所占的百分比乘以360°即可;

(3)畫出樹狀圖,然后根據概率公式列式計算即可得解.【詳解】解:(1)九(1)班的學生人數為:12÷30%=40(人),喜歡足球的人數為:40?4?12?16=40?32=8(人),補全統計圖如圖所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圓心角是20%×360°=72°;故答案為(1)40;(2)10;20;72;(3)根據題意畫出樹狀圖如下:一共有12種情況,恰好是1男1女的情況有6種,∴P(恰好是1男1女)==.19、(1);(2);(3)【解析】

(1)聯立兩直線解析式,求出交點P坐標即可;(2)由F坐標確定出OF的長,得到E的橫坐標為a,代入直線OP解析式表示出E縱坐標,即為EF的長,分兩種情況考慮:當時,矩形EBOF與三角形OPA重疊部分為直角三角形OEF,表示出三角形OEF面積S與a的函數關系式;當時,重合部分為直角梯形面積,求出S與a函數關系式.(3)根據(1)所求,先求得A點坐標,再確定AP和PM的長度分別是2和2,又由OP=2,得到P怎么平移會得到M,按同樣的方法平移A即可得到Q.【詳解】解:(1)聯立得:,解得:;∴P的坐標為;(2)分兩種情況考慮:當時,由F坐標為(a,0),得到OF=a,把E橫坐標為a,代入得:即此時當時,重合的面積就是梯形面積,F點的橫坐標為a,所以E點縱坐標為M點橫坐標為:-3a+12,∴所以;(3)令中的y=0,解得:x=4,則A的坐標為(4,0)則AP=,則PM=2又∵OP=∴點P向左平移3個單位在向下平移可以得到M1點P向右平移3個單位在向上平移可以得到M2∴A向左平移3個單位在向下平移可以得到Q1(1,-)A向右平移3個單位在向上平移可以得到Q1(7,)所以,存在Q點,且坐標是【點睛】本題考查一次函數綜合題、勾股定理以及逆定理、矩形的性質、全等三角形的判定和性質、解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.20、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結論運用]過點E作EQ⊥BC,先根據矩形的性質求出BF,根據翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設DH=x,利用勾股定理求出x得到BH=6,再根據∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結論運用]如圖④過點E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長AD,BC交于點F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結論可得:ED+EC=BH,設DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點,∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長之和(6+2)dm.【點睛】此題是一道綜合題,考查三角形全等的判定及性質,勾股定理,矩形的性質定理,三角形的相似的判定及性質定理,翻折的性質,根據題中小軍和小俊的思路進行證明,故正確理解題意由此進行后面的證明是解題的關鍵.21、(1)詳見解析;(2)80°.【分析】(1)根據∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數.【解析】

(1)根據∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據全等三角形對應角相等,運用五邊形內角和,即可得到∠BAE的度數.【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質.22、這種測量方法可行,旗桿的高為21.1米.【解析】分析:根據已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質得出即可.詳解:這種測量方法可行.理由如下:設旗桿高AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論