版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四、單純形法的一般描述:
1、初始可行解的確定
(1)初始可行基的確定觀察法—系數(shù)矩陣中是否含有現(xiàn)成的單位陣?LP限制條件中全部是“≤”類型的約束將新增的松弛變量作為初始基變量,對(duì)應(yīng)的系數(shù)列向量構(gòu)成單位陣;1可編輯ppt
先將約束條件標(biāo)準(zhǔn)化,再引入非負(fù)的人工變量,以人工變量作為初始基變量,其對(duì)應(yīng)的系數(shù)列向量構(gòu)成單位陣,稱為“人造基”;然后用大M法或兩階段法求解;
線性規(guī)劃限制條件都是“≥”或“=”類型的約束——2可編輯ppt等式約束左端引入人工變量的目的使約束方程的系數(shù)矩陣中出現(xiàn)一個(gè)單位陣,用單位陣的每一個(gè)列向量對(duì)應(yīng)的決策變量作為“基變量”,這樣,出現(xiàn)在單純形表格中的B(i)列(即約束方程的右邊常數(shù))值正好就是基變量的取值。(注意:用非基變量表示基變量的表達(dá)式)3可編輯ppt①如果限制條件中既有“≤”類型的約束,又有“≥”或“=”類型的約束,怎麼辦?構(gòu)造“不完全的人造基”!
討論②為什麼初始可行基一定要選單位陣?b列正好就是基變量的取值,檢驗(yàn)數(shù)行和b列交叉處元素也正好對(duì)應(yīng)目標(biāo)函數(shù)值,
因此稱b列為解答列4可編輯ppt(2)寫出初始基本可行解——根據(jù)“用非基變量表示基變量的表達(dá)式”,非基變量取0,算出基變量,搭配在一起構(gòu)成初始基本可行解。
2、建立判別準(zhǔn)則:(1)兩個(gè)基本表達(dá)式的一般形式LP限制條件中全部是“≤”類型約束,新增的松弛變量作為初始基變量的情況來描述:5可編輯ppt此時(shí)LP的標(biāo)準(zhǔn)型為非基變量 基變量6可編輯ppt初始可行基:初始基本可行解:
7可編輯ppt一般(經(jīng)過若干次迭代),對(duì)于基B,用非基變量表出基變量的表達(dá)式為:用非基變量表示目標(biāo)函數(shù)的表達(dá)式:
8可編輯ppt若是對(duì)應(yīng)于基B的基本可行解,是非基變量的檢驗(yàn)數(shù),若對(duì)于一切非基變量的角指標(biāo)j,均有≤0,則X(0)為最優(yōu)解。(2)最優(yōu)性判別定理(3)無“有限最優(yōu)解”的判別定理
若為一基本可行解,有一非基變量xk,其檢驗(yàn)數(shù),而對(duì)于i=1,2,…,m,均有,則該線性規(guī)劃問題沒有“有限最優(yōu)解”。9可編輯ppt舉例:用非基變量表示基變量的表達(dá)式代表兩個(gè)約束條件:x2對(duì)應(yīng)的系數(shù)列向量P2=(1,3)T,設(shè):當(dāng)前的換入變量是X2,按最小比值原則確定換出變量:10可編輯ppt要求:
于是:如果x2的系數(shù)列變成P2’=(-1,0)T,則用非基變量表示基變量的表達(dá)式就變成;可行性自然滿足,最小比值原則失效,意即x2的值可以任意增大→原線性規(guī)劃無“有限最優(yōu)解”。11可編輯ppt
3、進(jìn)行基變換(1)選擇進(jìn)基變量——原則:正檢驗(yàn)數(shù)(或最大正檢驗(yàn)數(shù))所對(duì)應(yīng)的變量進(jìn)基,目的是使目標(biāo)函數(shù)得到改善(較快增大);進(jìn)基變量對(duì)應(yīng)的系數(shù)列稱為主元列。(2)出基變量的確定——按最小比值原則確定出基變量,為的是保持解的可行性;出基變量所在的行稱為主元行。主元行和主元列的交叉元素稱為主元素。12可編輯ppt
4、主元變換(旋轉(zhuǎn)運(yùn)算或樞運(yùn)算)按照主元素進(jìn)行矩陣的初等行變換——把主元素變成1,主元列的其他元素變成0(即主元列變?yōu)閱挝幌蛄浚懗鲂碌幕究尚薪?,返回最?yōu)性檢驗(yàn)。例1.8的表格單純形法計(jì)算過程:
13可編輯ppt表格單純形法求解步驟第一步:將LP化為標(biāo)準(zhǔn)型,并加以整理。引入適當(dāng)?shù)乃神Y變量、剩余變量和人工變量,使約束條件化為等式,并且約束方程組的系數(shù)陣中有一個(gè)單位陣。
(這一步計(jì)算機(jī)可自動(dòng)完成)
確定初始可行基,寫出初始基本可行解14可編輯ppt第二步:最優(yōu)性檢驗(yàn)計(jì)算檢驗(yàn)數(shù),檢查:所有檢驗(yàn)數(shù)是否≤0?
是——結(jié)束,寫出最優(yōu)解和目標(biāo)函數(shù)最優(yōu)值;還有正檢驗(yàn)數(shù)——檢查相應(yīng)系數(shù)列≤0?是——結(jié)束,該LP無“有限最優(yōu)解”!不屬于上述兩種情況,轉(zhuǎn)入下一步—基變換。
確定是停止迭代還是轉(zhuǎn)入基變換?15可編輯ppt
選擇(最大)正檢驗(yàn)數(shù)對(duì)應(yīng)的系數(shù)列為主元列,主元列對(duì)應(yīng)的非基變量為換入變量;最小比值對(duì)應(yīng)的行為主元行,主元行對(duì)應(yīng)的基變量為換出變量。第三步:基變換確定進(jìn)基變量和出基變量。16可編輯ppt利用矩陣的初等行變換把主元列變成單位向量,主元素變?yōu)?,進(jìn)基變量對(duì)應(yīng)的檢驗(yàn)數(shù)變成0,從而得到一張新的單純形表,返回第二步。第四步換基迭代(旋轉(zhuǎn)運(yùn)算、樞運(yùn)算)完成一次迭代,得到新的基本可行解和相應(yīng)的目標(biāo)函數(shù)值17可編輯ppt該迭代過程直至下列情況之一發(fā)生時(shí)停止
檢驗(yàn)數(shù)行全部變?yōu)榉钦?;(得到最?yōu)解)或主元列≤0(最優(yōu)解無界)停止迭代的標(biāo)志(停機(jī)準(zhǔn)則)依據(jù):最優(yōu)性檢驗(yàn)的兩個(gè)定理最優(yōu)性判別定理;無“有限最優(yōu)解”判斷定理18可編輯ppt五、各種類型線性規(guī)劃的處理1、分類及處理原則:(1)類型一:目標(biāo)要求是“Max”,約束條件是“≤”類型——左邊加上非負(fù)松弛變量變成等式約束(約束條件標(biāo)準(zhǔn)化),將引入的松弛變量作為初始基變量,則初始可行基是一個(gè)單位陣,用原始單純形法求解。19可編輯ppt(2)類型二:目標(biāo)要求是“Max”,約束條件是“=”類型——左邊引入非負(fù)的人工變量,并將引入的人工變量作為初始基變量,則初始可行基是一個(gè)單位陣,然后用大M法或兩階段法求解。(3)類型三:目標(biāo)要求是“Max”,約束條件是“≥”類型——約束條件標(biāo)準(zhǔn)化,左邊減去非負(fù)的剩余變量,變成等式約束,化為類型二。20可編輯ppt2、處理人工變量的方法:(1)大M法——在約束條件中人為地加入非負(fù)的人工變量,以便使它們對(duì)應(yīng)的系數(shù)列向量構(gòu)成單位陣。問題:加入的人工變量是否合理?如何處理?在目標(biāo)函數(shù)中,給人工變量前面添上一個(gè)絕對(duì)值很大的負(fù)系數(shù)-M(M>>0),迭代過程中,只要基變量中還存在人工變量,目標(biāo)函數(shù)就不可能實(shí)現(xiàn)極大化——懲罰!21可編輯ppt①最優(yōu)表中,基變量不包含人工變量,則最優(yōu)解就是原線性規(guī)劃的最優(yōu)解,不影響目標(biāo)函數(shù)的取值;②最優(yōu)表中,基變量中仍含有人工變量,表明原線性規(guī)劃的約束條件被破壞,線性規(guī)劃沒有可行解,也就沒有最優(yōu)解!結(jié)果問題結(jié)果②中求得的最優(yōu)解是哪個(gè)線性規(guī)劃的最優(yōu)解?為什麼?22可編輯ppt大M法舉例加入松弛變量、剩余變量和人工變量:23可編輯ppt六、迭代過程中可能出現(xiàn)的問題及處理方法1、為確定出基變量要計(jì)算比值,該比值=解答列元素/主元列元素。對(duì)于主元列的0元素或負(fù)元素是否也要計(jì)算比值?(此時(shí)解的可行性自然滿足,不必計(jì)算;如果主元列元素全部為0元素或負(fù)元素,則最小比值失效,線性規(guī)劃無“有限最優(yōu)解”)24可編輯ppt2、出現(xiàn)若干個(gè)相同的最小比值怎麼辦?(說明出現(xiàn)了退化的基本可行解,即非0分量的個(gè)數(shù)小于約束方程的個(gè)數(shù)。按照“攝動(dòng)原理”所得的規(guī)則,從相同比值對(duì)應(yīng)的基變量中選下標(biāo)最大的基變量作為換出變量可以避免出現(xiàn)“死循環(huán)”現(xiàn)象)3、選擇進(jìn)基變量時(shí),同時(shí)有若干個(gè)正檢驗(yàn)數(shù),怎麼選?(最大正檢驗(yàn)數(shù)或從左至右第1個(gè)出現(xiàn)的正檢驗(yàn)數(shù)所對(duì)應(yīng)的非基變量進(jìn)基)25可編輯ppt(2)兩階段法
第一階段:建立輔助線性規(guī)劃并求解,以判斷原線性規(guī)劃是否存在基本可行解。輔助線性規(guī)劃的結(jié)構(gòu):目標(biāo)函數(shù)W為所有人工變量之和,目標(biāo)要求是使目標(biāo)函數(shù)極小化,約束條件與原線性規(guī)劃相同。
26可編輯ppt
求解結(jié)果①W最優(yōu)值=0——即所有人工變量取值全為0(為什麼?),均為非基變量,最優(yōu)解是原線性規(guī)劃的一個(gè)基本可行解,轉(zhuǎn)入第二階段;②W最優(yōu)值=0——但人工變量中有等于0的基變量,構(gòu)成退化的基本可行解,可以轉(zhuǎn)化為情況①;如何轉(zhuǎn)化?
選一個(gè)不是人工變量的非基變量進(jìn)基,把在基中的人工變量替換出來27可編輯ppt③W最優(yōu)值>0——至少有一個(gè)人工變量取值>0,說明基變量中至少有1個(gè)人工變量,表明原問題沒有可行解,討論結(jié)束。(1)+++=+++…..21tsxxxMinZmnnn………----=+++
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版汽車銷售合同擔(dān)保法執(zhí)行合同3篇
- 2025年環(huán)保節(jié)能建筑材料供應(yīng)合同3篇
- 2025年度個(gè)人汽車貸款購車合同(新能源汽車購置補(bǔ)貼合同)3篇
- 長(zhǎng)沙幼兒師范高等??茖W(xué)?!睹绹?guó)文學(xué)史及選讀(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度文化產(chǎn)業(yè)股權(quán)投資保密及運(yùn)營(yíng)管理協(xié)議3篇
- 校園心理咨詢服務(wù)體系的完善與創(chuàng)新
- 2025年度夫妻忠誠協(xié)議履行監(jiān)督與違約追究協(xié)議4篇
- 學(xué)生實(shí)訓(xùn)前安全教育的重要性與策略
- 心理教育課程在學(xué)生心理健康中的重要性
- 個(gè)人車輛抵押權(quán)協(xié)議標(biāo)準(zhǔn)范本2024版
- DL∕T 1100.1-2018 電力系統(tǒng)的時(shí)間同步系統(tǒng) 第1部分:技術(shù)規(guī)范
- 三角形與全等三角形復(fù)習(xí)教案 人教版
- 2024年1月高考適應(yīng)性測(cè)試“九省聯(lián)考”英語 試題(學(xué)生版+解析版)
- 《朝天子·詠喇叭-王磐》核心素養(yǎng)目標(biāo)教學(xué)設(shè)計(jì)、教材分析與教學(xué)反思-2023-2024學(xué)年初中語文統(tǒng)編版
- 成長(zhǎng)小說智慧樹知到期末考試答案2024年
- 紅色革命故事《王二小的故事》
- 海洋工程用高性能建筑鋼材的研發(fā)
- 英語48個(gè)國(guó)際音標(biāo)課件(單詞帶聲、附有聲國(guó)際音標(biāo)圖)
- GB/T 6892-2023一般工業(yè)用鋁及鋁合金擠壓型材
- 冷庫安全管理制度
- 2023同等學(xué)力申碩統(tǒng)考英語考試真題
評(píng)論
0/150
提交評(píng)論