




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市松江區(qū)達標名校畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分2.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學(xué)記數(shù)法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣53.在下列條件中,能夠判定一個四邊形是平行四邊形的是()A.一組對邊平行,另一組對邊相等B.一組對邊相等,一組對角相等C.一組對邊平行,一條對角線平分另一條對角線D.一組對邊相等,一條對角線平分另一條對角線4.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.65.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為相反數(shù)的點是A.點A和點C B.點B和點DC.點A和點D D.點B和點C6.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.計算6m6÷(-2m2)3的結(jié)果為()A. B. C. D.8.如圖所示,在平面直角坐標系中,拋物線y=-x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為().A.3 B. C. D.9.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°10.某經(jīng)銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊二、填空題(本大題共6個小題,每小題3分,共18分)11.一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為:_________________12.已知關(guān)于x的方程x2﹣2x+n=1沒有實數(shù)根,那么|2﹣n|﹣|1﹣n|的化簡結(jié)果是_____.13.計算:(3+1)(3﹣1)=.14.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.15.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.16.如果一個正多邊形的中心角等于,那么這個正多邊形的邊數(shù)是__________.三、解答題(共8題,共72分)17.(8分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.18.(8分)如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.求∠CFA度數(shù);求證:AD∥BC.19.(8分)如圖,點D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.20.(8分)先化簡,再求值:,其中滿足.21.(8分)在平面直角坐標系xOy中,拋物線,與x軸交于點C,點C在點D的左側(cè),與y軸交于點A.求拋物線頂點M的坐標;若點A的坐標為,軸,交拋物線于點B,求點B的坐標;在的條件下,將拋物線在B,C兩點之間的部分沿y軸翻折,翻折后的圖象記為G,若直線與圖象G有一個交點,結(jié)合函數(shù)的圖象,求m的取值范圍.22.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當(dāng)x>0時,kx+b<m23.(12分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.如圖1,當(dāng)點E在邊BC上時,求證DE=EB;如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.24.如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.求證:AB為⊙C的切線.求圖中陰影部分的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)三角形的性質(zhì)即可作出判斷.【詳解】解:A、正確,符合三角形三邊關(guān)系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.【點睛】本題考查了命題真假的判斷,屬于基礎(chǔ)題.根據(jù)定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.2、B【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、C【解析】A、錯誤.這個四邊形有可能是等腰梯形.B、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.C、正確.可以利用三角形全等證明平行的一組對邊相等.故是平行四邊形.D、錯誤.不滿足三角形全等的條件,無法證明相等的一組對邊平行.故選C.4、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質(zhì)可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質(zhì);矩形的性質(zhì);勾股定理;銳角三角函數(shù).5、C【解析】
根據(jù)相反數(shù)的定義進行解答即可.【詳解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根據(jù)相反數(shù)和為0的特點,可確定點A和點D表示互為相反數(shù)的點.故答案為C.【點睛】本題考查了相反數(shù)的定義,掌握相反數(shù)和為0是解答本題的關(guān)鍵.6、C【解析】
y隨x的增大而減小,可得一次函數(shù)y=kx+b單調(diào)遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調(diào)遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過第二、一、四象限,不經(jīng)過第三象限,故選C.【點睛】本題考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質(zhì)是解題的關(guān)鍵.7、D【解析】分析:根據(jù)冪的乘方計算法則求出除數(shù),然后根據(jù)同底數(shù)冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎(chǔ)題型.明白冪的計算法則是解決這個問題的關(guān)鍵.8、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點B,再利用配方法得到點A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因為AP垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點睛】本題考查的是二次函數(shù)的綜合運用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.9、D【解析】
直接利用三角板的特點,結(jié)合平行線的性質(zhì)得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點睛】此題主要考查了平行線的性質(zhì),根據(jù)平行線的性質(zhì)得出∠BDE的度數(shù)是解題關(guān)鍵.10、C【解析】試題分析:根據(jù)題意設(shè)出未知數(shù),列出相應(yīng)的不等式,從而可以解答本題.設(shè)這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點:一元一次不等式的應(yīng)用二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,利用正方形的性質(zhì)得到OH為正方形ABCD的內(nèi)切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質(zhì)得OA=2OH即可解答.【詳解】解:如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內(nèi)切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為22故答案為:22【點睛】本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關(guān)概念.12、﹣1【解析】
根據(jù)根與系數(shù)的關(guān)系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去絕對值符號,即可得出答案.【詳解】解:∵關(guān)于x的方程x2?2x+n=1沒有實數(shù)根,∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n>2,∴|2?n|-│1-n│=n-2-n+1=-1.故答案為-1.【點睛】本題考查了根的判別式,解題的關(guān)鍵是根據(jù)根與系數(shù)的關(guān)系求出n的取值范圍再去絕對值求解即可.13、1.【解析】
根據(jù)平方差公式計算即可.【詳解】原式=(3)2-12=18-1=1故答案為1.【點睛】本題考查的是二次根式的混合運算,掌握平方差公式、二次根式的性質(zhì)是解題的關(guān)鍵.14、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應(yīng)用與設(shè)計,平行線分線段成比例定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,所以中考??碱}型.15、【解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.16、12.【解析】
根據(jù)正n邊形的中心角的度數(shù)為進行計算即可得到答案.【詳解】解:根據(jù)正n邊形的中心角的度數(shù)為,則n=360÷30=12,故這個正多邊形的邊數(shù)為12,故答案為:12.【點睛】本題考查的是正多邊形內(nèi)角和中心角的知識,掌握中心角的計算公式是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【點睛】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識,難度適中.18、(1)75°(2)見解析【解析】
(1)由等邊三角形的性質(zhì)可得∠ACB=60°,BC=AC,由旋轉(zhuǎn)的性質(zhì)可得CF=BC,∠BCF=90°,由等腰三角形的性質(zhì)可求解;(2)由“SAS”可證△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可證AD∥BC.【詳解】解:(1)∵△ABC是等邊三角形∴∠ACB=60°,BC=AC∵等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等邊三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),等腰三角形的性質(zhì),平行線的判定,熟練運用旋轉(zhuǎn)的性質(zhì)是本題關(guān)鍵.19、見解析【解析】試題分析:依據(jù)題意,可通過證△ABC≌△EFD來得出AB=EF的結(jié)論,兩三角形中,已知的條件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根據(jù)AAS判定兩三角形全等解題.
證明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC與△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.20、,1.【解析】
原式括號中的兩項通分并利用同分母分式的加法法則計算,再與括號外的分式通分后利用同分母分式的加法法則計算,約分得到最簡結(jié)果,將變形為,整體代入計算即可.【詳解】解:原式∵,∴,∴原式【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運算順序和運算法則.21、(1)M的坐標為;(2)B(4,3);(3)或.【解析】
利用配方法將已知函數(shù)解析式轉(zhuǎn)化為頂點式方程,可以直接得到答案根據(jù)拋物線的對稱性質(zhì)解答;利用待定系數(shù)法求得拋物線的表達式為根據(jù)題意作出圖象G,結(jié)合圖象求得m的取值范圍.【詳解】解:(1),該拋物線的頂點M的坐標為;由知,該拋物線的頂點M的坐標為;該拋物線的對稱軸直線是,點A的坐標為,軸,交拋物線于點B,點A與點B關(guān)于直線對稱,;拋物線與y軸交于點,..拋物線的表達式為.拋物線G的解析式為:由.由,得:拋物線與x軸的交點C的坐標為,點C關(guān)于y軸的對稱點的坐標為.把代入,得:.把代入,得:.所求m的取值范圍是或.故答案為(1)M的坐標為;(2)B(4,3);(3)或.【點睛】本題考查了二次函數(shù)圖象與幾何變換,待定系數(shù)法求二次函數(shù)的解析式、二次函數(shù)的圖象和性質(zhì),畫出函數(shù)G的圖象是解題的關(guān)鍵.22、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標為(【解析】
(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當(dāng)0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當(dāng)x>0時,kx+b<mx(3)如圖,作B關(guān)于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設(shè)直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點P的坐標為(175【點睛】本題考查了待定系數(shù)法求反比例函數(shù)及一次函數(shù)解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,正確識圖是解(2)的關(guān)鍵,根據(jù)軸對稱的性質(zhì)確定出點P的位置是解答(3)的關(guān)鍵.23、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】
(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國圓邊機數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國加氫精制阻垢劑數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國冷壓紙數(shù)據(jù)監(jiān)測研究報告
- 2025年四年級語文公開課《我的動物朋友》標準課件
- PU女鞋企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 化學(xué)藥物雜質(zhì)分離純化新技術(shù)行業(yè)跨境出海戰(zhàn)略研究報告
- 沙羅布企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 用紡織品企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 2025年中國骨玉瓷制品市場調(diào)查研究報告
- 女士皮鞋企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 淺談班級的文化建設(shè)課題論文開題結(jié)題中期研究報告(經(jīng)驗交流)
- PMC年終個人總結(jié)精編ppt
- DBJ∕T 15-129-2017 集中空調(diào)制冷機房系統(tǒng)能效監(jiān)測及評價標準
- U8-EAI二次開發(fā)說明
- Q∕GDW 11612.41-2018 低壓電力線高速載波通信互聯(lián)互通技術(shù)規(guī)范 第4-1部分:物理層通信協(xié)議
- 2006 年全國高校俄語專業(yè)四級水平測試試卷
- 新人教版數(shù)學(xué)四年級下冊全冊表格式教案
- 疫情期間離市外出審批表
- (完整版)全身體格檢查評分標準(表)
- 裝飾裝修工程施工合理化建議和降低成本措施提要:完整
- (改)提高地下室側(cè)墻剛性防水施工合格率_圖文
評論
0/150
提交評論