版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省六安市金寨縣2024年八年級數(shù)學第二學期期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,在□ABCD中,已知AD=8cm,AB=5cm,AE平分∠BAD交BC邊于點E,則EC等于()A.1cm B.2cm C.3cm D.4cm2.如圖,已知?AOBC的頂點O(0,0),A(﹣1,2),點B在x軸正半軸上按以下步驟作圖:①以點O為圓心,適當長度為半徑作弧,分別交邊OA,OB于點D,E;②分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧在∠AOB內(nèi)交于點F;③作射線OF,交邊AC于點G,則點G的坐標為()A.(﹣1,2) B.(,2) C.(3﹣,2) D.(﹣2,2)3.下列根式中不是最簡二次根式的是()A. B. C. D.4.如圖,平面直角坐標系中,在邊長為1的正方形的邊上有—動點沿正方形運動一周,則的縱坐標與點走過的路程之間的函數(shù)關系用圖象表示大致是()A. B. C. D.5.如圖,?ABCD的對角線AC,BD交于點O,E為AB的中點,G為BC延長線上一點,射線EO與∠ACG的角平分線交于點F,若AC=5,BC=6,則線段EF的長為()A.5 B. C.6 D.76.的值是()A. B.3 C.±3 D.97.下列式子屬于最簡二次根式的是()A. B. C.(a>0) D.8.已知四邊形ABCD,有下列四組條件:①AB//CD,AD//BC;②AB=CD,AD=BC;③AB//CD,AB=CD;④AB//CD,AD=BC.其中不能判定四邊形ABCD為平行四邊形的一組條件是()A.① B.② C.③ D.④9.有下列說法:①平行四邊形既是中心對稱圖形,又是軸對稱圖形;②正方形有四條對稱軸;③平行四邊形相鄰兩個內(nèi)角的和等于;④菱形的面積計算公式,除了“底×高”之外,還有“兩對角線之積”;⑤矩形和菱形均是特殊的平行四邊形,因此具有平行四邊形的所有性質(zhì).其中正確的結論的個數(shù)有()A.1 B.2 C.3 D.410.在平面直角坐標系中,點M(3,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知正比例函數(shù)y=kx(k<0)的圖象上兩點A(x1,y1)、B(x2,y2),且x1<x2,則下列不等式中恒成立的是().A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<012.如圖,菱形ABCD的周長為16,∠ABC=120°,則AC的長為()A. B.4 C. D.2二、填空題(每題4分,共24分)13.若分式的值為0,則x的值是_____.14.如圖,在正方形中,點、在對角線上,分別過點、作邊的平行線交于點、,作邊的平行線交于點、.若,則圖中陰影部分圖形的面積和為_____.15.若菱形的兩條對角線長分別是6㎝和8㎝,則該菱形的面積是㎝1.16.若二次根式有意義,則x的取值范圍為__________.17.已知關于的方程的一個根為,則實數(shù)的值為()A. B. C. D.18.已知點,,直線與線段有交點,則的取值范圍是______.三、解答題(共78分)19.(8分)如圖1,正方形ABCD的對角線AC,BD相交于點O,E是AC上一點,連接EB,過點A作AM⊥BE,垂足為M,AM與BD相交于F.(1)直接寫出線段OE與OF的數(shù)量關系;(2)如圖2,若點E在AC的延長線上,過點A作AM⊥BE,AM交DB的延長線于點F,其他條件不變.問(1)中的結論還成立嗎?如果成立,請給出證明;如果不成立,說明理由;(3)如圖3,當BC=CE時,求∠EAF的度數(shù).20.(8分)深圳市某中學為了更好地改善教學和生活環(huán)境,該學校計劃在2020年暑假對兩棟主教學樓重新進行裝修.(1)由于時間緊迫,需要雇傭建筑工程隊完成這次裝修任務.現(xiàn)在有甲,乙兩個工程隊,從這兩個工程隊資質(zhì)材料可知:如果甲工程隊單獨施工,則剛好如期完成,如果乙工程隊單獨施工則要超過期限6天才能完成,若兩隊合做4天,剩下的由乙隊單獨施工,則剛好也能如期完工,那么,甲工程隊單獨完成此工程需要多少天?(2)裝修后,需要對教學樓進行清潔打掃,學校準備選購A、B兩種清潔劑共100瓶,其中A種清潔劑6元/瓶,B種清潔劑9元/瓶.要使購買總費用不多于780元,則A種清潔劑最少應購買多少瓶?21.(8分)如圖,在△ABC中,點D、E、F分別是邊AB、AC、BC的中點,且BC=2AF。(1)求證:四邊形ADEF為矩形;(2)若∠C=30°、AF=2,寫出矩形ADEF的周長。22.(10分)觀摩、學習是我們生活的一部分,而在觀摩中與展覽品保持一定的距離是一種文明的表現(xiàn).某學校數(shù)學業(yè)余學習小組在平面直角坐標系xOy有關研討中,將到線段PQ所在的直線距離為的直線,稱為直線PQ的“觀察線”,并稱觀察線上到P、Q兩點距離和最小的點L為線段PQ的“最佳觀察點”.(1)如果P(1,),Q(4,),那么在點A(1,0),B(,2),C(,3)中,處在直線PQ的“觀察線”上的是點;(2)求直線y=x的“觀察線”的表達式;(3)若M(0,﹣1),N在第二象限,且MN=6,當MN的一個“最佳觀察點”在y軸正半軸上時,直接寫出點N的坐標;并按逆時針方向聯(lián)結M、N及其所有“最佳觀察點”,直接寫出聯(lián)結所圍成的多邊形的周長和面積.23.(10分)下表是隨機抽取的某公司部分員工的月收入資料.(1)請計算樣本的平均數(shù)和中位數(shù);(2)甲乙兩人分別用樣本平均數(shù)和中位數(shù)來估計推斷公司全體員工月收入水平,請你寫出甲乙兩人的推斷結論;并指出誰的推斷比較科學合理,能直實地反映公司全體員工月收入水平。24.(10分)已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;(2)若點P在線段AB上.如圖2,連接AC,當P為AB的中點時,判斷△ACE的形狀,并說明理由.25.(12分)珠海市某中學在創(chuàng)建“書香校園”活動中,為了解學生的讀書情況,某校抽樣調(diào)查了部分同學在一周內(nèi)的閱讀時間,繪制如下統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:(1)被抽查學生閱讀時間的中位數(shù)為h,平均數(shù)為h;(2)若該校共有1500名學生,請你估算該校一周內(nèi)閱讀時間不少于3h的學生人數(shù).26.如圖,平行四邊形的頂點分別在軸和軸上,頂點在反比例函數(shù)的圖象上,求平行四邊形的面積.
參考答案一、選擇題(每題4分,共48分)1、C【解析】
根據(jù)在□ABCD中,AE平分∠BAD,得到∠BAE=∠AEB,即AB=BE,即可求出EC的長度.【詳解】∵在□ABCD中,AE平分∠BAD,∴∠DAE=∠BAE,∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵AD=8cm,AB=5cm,∴BE=5cm,BC=8cm,∴CE=8-5=3cm,故選C.【點睛】本題是對平行四邊形知識的考查,熟練掌握平行四邊形性質(zhì)及角平分線知識是解決本題的關鍵.2、A【解析】
依據(jù)勾股定理即可得到Rt△AOH中,AO=,依據(jù)∠AGO=∠AOG,即可得到AG=AO=,進而得出HG=-1,可得G(-1,2).【詳解】如圖,過點A作AH⊥x軸于H,AG與y軸交于點M,∵?AOBC的頂點O(0,0),A(-1,2),∴AH=2,HO=1,∴Rt△AOH中,AO=,由題可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴MG=-1,∴G(-1,2),故選A.【點睛】本題主要考查了角平分線的作法,勾股定理以及平行四邊形的性質(zhì)的運用,解題時注意:求圖形中一些點的坐標時,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律.3、C【解析】
最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母,被開方數(shù)中不含能開的盡方的因數(shù)或因式.=2,故不是最簡二次根式.故選C4、D【解析】
根據(jù)正方形的邊長即可求出AB=BC=CD=DA=1,然后結合圖象可知點A的縱坐標為2,線段BC上所有點的縱坐標都為1,線段DA上所有點的縱坐標都為2,再根據(jù)點P運動的位置逐一分析,用排除法即可得出結論.【詳解】解:∵正方形ABCD的邊長為1,∴AB=BC=CD=DA=1由圖象可知:點A的縱坐標為2,線段BC上所有點的縱坐標都為1,線段DA上所有點的縱坐標都為2,∴當點P從A到B運動時,即0<S≤1時,點P的縱坐標逐漸減小,故可排除選項A;當點P到點B時,即當S=1時,點P的縱坐標y=1,故可排除選項B;當點P從B到C運動時,即1<S≤2時,點P的縱坐標y恒等于1,故可排除C;當點P從C到D運動時,即2<S≤3時,點P的縱坐標逐漸增大;當點P從D到A運動時,即3<S≤4時,點P的縱坐標y恒等于2,故選D.【點睛】此題考查的是根據(jù)圖形上的點的運動,找出對應的圖象,掌握橫坐標、縱坐標的實際意義和根據(jù)點的不同位置逐一分析是解決此題的關鍵.5、B【解析】
只要證明OF=OC,再利用三角形的中位線定理求出EO即可解決問題.【詳解】解:∵四邊形ABCD是平行四邊形,∴OA=OC=,∵AE=EB,∴EF∥BC,OE=BC=3,∴∠F=∠FCG,∵∠FCG=∠FCO,∴∠F=∠FCO,∴OF=OC=,∴EF=EO+OF=,故選B.【點睛】本題考查平行四邊形的性質(zhì)、三角形的中位線定理、等腰三角形的判定和性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.6、B【解析】
根據(jù)二次根式的性質(zhì)解答.【詳解】解:原式==3【點睛】二次根式:一般地,形如(a≥0)的代數(shù)式叫做二次根式.當a>0時,表示a的算術平方根;當a=0時,=0;當a<0時,二次根式無意義.7、B【解析】
利用最簡二次根式定義判斷即可.【詳解】A、=,不符合題意;B、是最簡二次根式,符合題意;C、(a>0)=|a|=a,不符合題意;D、=,不符合題意.故選:B.【點睛】此題考查了最簡二次根式,熟練掌握最簡二次根式定義是解本題的關鍵.最簡二次根式的條件:(1)被開方數(shù)的因數(shù)是整數(shù)或字母,因式是整式;(2)被開方數(shù)中不含有可化為平方數(shù)或平方式的因數(shù)或因式.8、D【解析】
①由有兩組對邊分別平行的四邊形是平行四邊形,可證得四邊形ABCD是平行四邊形;②由有兩組對邊分別相等的四邊形是平行四邊形,可證得四邊形ABCD是平行四邊形;③由一組對邊平行且相等的四邊形是平行四邊形,能判定四邊形ABCD是平行四邊形,④由已知可得四邊形ABCD是平行四邊形或等腰梯形.【詳解】解:①根據(jù)平行四邊形的判定定理:兩組對邊分別平行的四邊形是平行四邊形,可知①能判定這個四邊形是平行四邊形;②根據(jù)平行四邊形的判定定理:兩組對邊分別相等的四邊形是平行四邊形,可知②能判定這個四邊形是平行四邊形;③根據(jù)平行四邊形的判定定理:一組對邊平行且相等的四邊形是平行四邊形,可知③能判定這個四邊形是平行四邊形;④由一組對邊平行,一組對邊相等的四邊形不一定是平行四邊形,可知④錯誤;故給出的四組條件中,①②③能判定這個四邊形是平行四邊形,故選:D.【點睛】此題考查了平行四邊形的判定.注意熟記平行四邊形的判定定理是解此題的關鍵.9、C【解析】
根據(jù)特殊平行四邊形的性質(zhì)即可判斷.【詳解】①平行四邊形既是中心對稱圖形,不是軸對稱圖形,故錯誤;②正方形有四條對稱軸,正確;③平行四邊形相鄰兩個內(nèi)角的和等于,正確;④菱形的面積計算公式,除了“底×高”之外,還有“兩對角線之積”,故錯誤;⑤矩形和菱形均是特殊的平行四邊形,因此具有平行四邊形的所有性質(zhì),正確.故②③⑤正確,選C【點睛】此題主要考查特殊平行四邊形的性質(zhì),解題的關鍵是熟知特殊平行四邊形的特點與性質(zhì).10、A【解析】
根據(jù)平面直角坐標系中,點的坐標與點所在的象限的關系,即可得到答案.【詳解】∵3>0,2>0,∴點M(3,2)在第一象限,故選A.【點睛】本題主要考查點的坐標與點所在象限的關系,掌握點的坐標的正負性與所在象限的關系,是解題的關鍵.11、C【解析】試題分析:根據(jù)k<1,正比例函數(shù)的函數(shù)值y隨x的增大而減小解答.∵直線y=kx的k<1,∴函數(shù)值y隨x的增大而減小,∵x1<x2,∴y1>y2,∴y1﹣y2>1.考點:(1)、一次函數(shù)圖象上點的坐標特征;(2)、正比例函數(shù)的圖象.12、A【解析】
試題分析:∵菱形ABCD的周長為16,∠ABC=120°,∴∠BAD=60°,AC⊥BD,AD=AB=4∴△ABD為等邊三角形,∴EB=在Rt△ABE中,AE=故可得AC=2AE=.故選A.考點:菱形的性質(zhì).二、填空題(每題4分,共24分)13、-2【解析】
根據(jù)分子等于零且分母不等于零列式求解即可.【詳解】解:由分式的值為2,得x+2=2且x﹣2≠2.解得x=﹣2,故答案為:﹣2.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為2,②分母的值不為2,這兩個條件缺一不可.14、2【解析】
首先根據(jù)已知條件,可得出矩形BEPF和矩形BHQG是正方形,陰影部分面積即為△ABD的面積,即可得解.【詳解】解:由已知條件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,∴矩形BEPF和矩形BHQG是正方形,又∵BP、BQ分別為正方形BEPF和正方形BHQG的對角線∴,∴陰影部分的面積即為△ABD的面積,∴故答案為2.【點睛】此題主要考查正方形的判定,然后利用其性質(zhì)進行等量轉換,即可解題.15、14【解析】已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.解:根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6×8=14cm1,故答案為14.16、x≤1【解析】
解:∵二次根式有意義,∴1-x≥0,∴x≤1.故答案為:x≤1.17、A【解析】
根據(jù)一元二次方程的根的定義,將根代入進行求解.【詳解】∵x=?2是方程的根,由一元二次方程的根的定義,可得(?2)2+2k?6=0,解此方程得到k=1.故選:A.【點睛】考查一元二次方程根的定義,使方程左右兩邊相等的未知數(shù)的值就是方程的解,又叫做方程的根.18、﹣1≤m≤1.【解析】
分別把點,代入直線,求得m的值,由此即可判定的取值范圍.【詳解】把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,所以當直線y=x+m與線段MN有交點時,m的取值范圍為﹣1≤m≤1.故答案為:﹣1≤m≤1.【點睛】本題考查了一次函數(shù)的圖象與線段的交點,根據(jù)點的坐標求得對應m的值,再利用數(shù)形結合思想是解決本題的關鍵.三、解答題(共78分)19、(1)OE=OF;(2)OE=OF仍然成立,理由見解析;(3)67.5°.【解析】分析:(1)根據(jù)正方形的性質(zhì)利用ASA判定△AOF≌△BOE,根據(jù)全等三角形的對應邊相等得到OE=OF;(2)類比(1)的方法證得同理得出結論成立;(3)由BC=CE,可證AB=BF,從而∠F=∠FAB=∠ABD=22.5°,然后根據(jù)∠EAF=∠FAB+∠BAO計算即可.詳解:(1)OE=OF;(2)OE=OF仍然成立,理由是:由正方形ABCD對角線垂直得,∠BOC=90°,∵AM⊥BE∴∠BMF=90°,∴∠BOC=∠BMF.∵∠MBF=∠OBE,∴∠F=∠E,又∵AO=BO,∴△AOF≌△BOE,∴OE=OF;(3)由(2)得OE=OF,且OB=OC,則BF=CE,∵BC=CE,∴AB=BF,∴∠F=∠FAB=∠ABD=22.5°,又∵∠BAO=45°,∴∠EAF=∠FAB+∠BAO=22.5°+45°=67.5°.點睛:本題考查正方形的性質(zhì),三角形全等的判定與性質(zhì),三角形外角的性質(zhì),是一道結論探索性問題.解答此類題我們要從變化中探究不變的數(shù)學本質(zhì),再從不變的數(shù)學本質(zhì)出發(fā),尋求變化的規(guī)律,通過觀察,試驗,歸納,類比等獲得數(shù)學猜想,并對所作的猜想進行嚴密的邏輯論證,考查了學生對知識的遷移能力,分析問題,解決問題的能力.20、(1)甲工程隊單獨完成需要12天;(2)A種清潔劑最少應購買1瓶【解析】
(1)可設甲工程隊單獨完成此工程需要x天,則乙工程隊單獨完成此工程需要(x+6)天,根據(jù)工作總量的等量關系,列出方程即可求解;(2)可設A種清潔劑應購買a瓶,則B種清潔劑應購買(100-a)瓶,根據(jù)購買總費用不多于780元,列出不等式即可求解.【詳解】解:(1)設甲工程隊單獨完成此工程需要x天,則乙工程隊單獨完成此工程需要(x+6)天,依題意有,解得x=12,經(jīng)檢驗,x=12是原方程的解.故甲工程隊單獨完成此工程需要12天;(2)設A種清潔劑應購買a瓶,則B種清潔劑應購買(100-a)瓶,依題意有6a+9(100-a)≤780,解得a≥1.故A種清潔劑最少應購買1瓶.【點睛】考查了分式方程的應用,一元一次不等式的應用,分析題意,找到關鍵描述語,找到合適的等量關系和不等關系是解決問題的關鍵.21、(1)證明見解析(2)2【解析】
(1)連接DE.根據(jù)三角形的中位線的性質(zhì)即可得到結論;(2)根據(jù)矩形的性質(zhì)得到∠BAC=∠FEC=90°,解直角三角形即可得到結論.【詳解】(1)連接DE,∵E、F分別是AC,BC中點∴EF//AB,EF=12∵點D是AB中點∴AD=12∴四邊形ADFE為平行四邊形∵點D、E分別為AB、AC中點∴DE=12∵BC=2AF∴DE=AF∴四邊形ADEF為矩形.(2)∵四邊形ADFE是矩形,∴∠BAC=∠FEC=90°,∵AF=2,F(xiàn)為BC中點,∴BC=4,CF=2,∵∠C=30°∴AC=23,CE=3∴AE=3∴矩形ADEF的周長為23【點睛】本題考查三角形中位線定理及應用,矩形的判定和性質(zhì),學生應熟練掌握以上定理即可解題.22、(1)A,B;(1)直線y=x的“觀察線”的解析式為y=x﹣1或y=x+1;(3)圍成的圖形是菱形MQNQ′,這個菱形的周長8,這個菱形的面積6.【解析】
(1)由題意線段PQ的“觀察線”的解析式為y=0或y=1,由此即可判斷;
(1)如圖1中,設直線的下方的“觀察線”MN交y軸于K,作KE⊥直線,求出直線MN的解析式,再根據(jù)對稱性求出直線的上方的“觀察線”PQ即可;
(3)如圖3中,設點Q是MN的一個“最佳觀察點”,點P是MN的中點.解直角三角形求出點P坐標,再根據(jù)中點坐標公式求出等N坐標;觀察圖象可知:設此時的另一個“最佳觀察點”為Q′,按逆時針方向聯(lián)結M、N及其所有“最佳觀察點”,所圍成的圖形是菱形MQNQ′,這個菱形的周長=8,這個菱形的面積==×6×1=6.【詳解】(1)如圖1中,由題意線段PQ的“觀察線”的解析式為y=0或y=1,∵點A在直線y=0上,點B在直線y=1上,∴點A,點B是直線PQ的“觀察線”上的點,故答案為A,B.(1)如圖1中,設直線y=x的下方的“觀察線”MN交y軸于K,作KE⊥直線y=x,由題意:EK=,∵直線y=x與x軸的夾角為30°,∴∠EOK=60°,∴∠EKO=30°,∴tan30°==,∴OE=1,∴OK=1OE=1,∵MN∥直線y=x,∴直線MN的解析式為y=x﹣1,根據(jù)對稱性可知在直線y=x上方的“觀察線”PQ的解析式為y=x+1.綜上所述,直線y=x的“觀察線”的解析式為y=x﹣1或y=x+1.(3)如圖3中,設點Q是MN的一個“最佳觀察點”,點P是MN的中點.當點Q在y軸的正半軸上時,連接PQ,則PQ垂直平分線線段MN.在Rt△PQM中,PQ=,PM=3,∴MQ==1,∵M(0,﹣1),OQ=1﹣1,作PH⊥y軸于H.在Rt△PQH中,∵tan∠PQH==,∴∠PQH=60°,∴∠QPH=30°,∴QH=PQ=,PH=QH=,∴OH=1﹣1﹣=﹣1,∴P(﹣,﹣1),∵PN=PM,∴N(﹣3,3﹣1).觀察圖象可知:設此時的另一個“最佳觀察點”為Q′,按逆時針方向聯(lián)結M、N及其所有“最佳觀察點”,所圍成的圖形是菱形MQNQ′,這個菱形的周=8,這個菱形的面積=×6×1=6.【點睛】本題考查一次函數(shù)綜合題、點到直線的距離、軌跡、解直角三角形等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,學會添加常用輔助線,構造直角三角形解決問題.23、(1)平均數(shù):6150元;中位數(shù):3200元;(2)甲:由樣本平均數(shù)為6150元,估計全體員工的月平均收入大約為6150元;乙:由樣本中位數(shù)為3200元,估計全體大約有一半的員工月收入超過3200元,有一半員工月收入不足3200元,乙推斷比較科學合理.【解析】
(1)要求平均數(shù)只要求出各個數(shù)據(jù)之和再除以數(shù)據(jù)個數(shù)即可;對于中位數(shù),因圖中是按從小到大的順序排列的,所以只要找出最中間的一個數(shù)(或最中間的兩個數(shù))即可;
(2)甲從員工平均工資水平的角度推斷公司員工月收入,乙從員工中間工資水平的角度推斷公司員工的收入,乙推斷比較科學合理.【詳解】解:(1)樣本的平均數(shù)為:=6150元;這組數(shù)據(jù)共有26個,第13、14個數(shù)據(jù)分別是3000、3400,所以樣本的中位數(shù)為:3200元;(2)甲:由樣本平均數(shù)為6150元,估計全體員工的月平均收入大約為6150元;乙:由樣本中位數(shù)為3200元,估計全體大約有一半的員工月收入超過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球活塞連桿套件行業(yè)調(diào)研及趨勢分析報告
- 家電維修合同協(xié)議書正規(guī)范本
- 垃圾桶項目采購合同
- 出租車租賃合同模板
- 2025居間合同協(xié)議書范本
- 產(chǎn)品全國總代理合同范本年
- 宣傳欄制作安裝合同書
- 委托合同范文年
- 2025年中圖版八年級歷史上冊階段測試試卷
- 2024年高考政治(安徽卷)真題詳細解讀及評析
- 數(shù)字經(jīng)濟學導論-全套課件
- 動物檢疫技術-動物檢疫的對象(動物防疫與檢疫技術)
- 中考記敘文閱讀
- 《計算機應用基礎》-Excel-考試復習題庫(含答案)
- 產(chǎn)科溝通模板
- 2023-2024學年四川省成都市小學數(shù)學一年級下冊期末提升試題
- GB/T 7462-1994表面活性劑發(fā)泡力的測定改進Ross-Miles法
- GB/T 2934-2007聯(lián)運通用平托盤主要尺寸及公差
- GB/T 21709.13-2013針灸技術操作規(guī)范第13部分:芒針
- 2022年青島職業(yè)技術學院單招語文考試試題及答案解析
- 急診科進修匯報課件
評論
0/150
提交評論