版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆鄂豫晉冀陜五省高三第二次診斷性檢測數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.2.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科試卷講評順序表,若化學(xué)排在生物前面,數(shù)學(xué)與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種3.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.4.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.5.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,26.設(shè)等比數(shù)列的前項和為,若,則的值為()A. B. C. D.7.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.8.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個9.已知隨機變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對所有都成立,則()A. B. C. D.10.已知是的共軛復(fù)數(shù),則()A. B. C. D.11.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm312.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.14.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.15.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.16.已知平面向量,,且,則向量與的夾角的大小為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.18.(12分)已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項和.19.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.20.(12分)已知圓外有一點,過點作直線.(1)當(dāng)直線與圓相切時,求直線的方程;(2)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長.21.(12分)某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時間的關(guān)系,對該校名高三學(xué)生平均每天體育鍛煉時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)將學(xué)生日均體育鍛煉時間在的學(xué)生評價為“鍛煉達(dá)標(biāo)”.(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63522.(10分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當(dāng)且僅當(dāng)時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.2、B【解析】
利用分步計數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學(xué),生物4種,且化學(xué)排在生物前面,有種排法;第二步將數(shù)學(xué)和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應(yīng)用,不相鄰采用插空法求解,準(zhǔn)確分步是關(guān)鍵,是基礎(chǔ)題3、D【解析】
根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.4、B【解析】
設(shè)點、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【詳解】設(shè)點、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.5、C【解析】
先求出集合U,再根據(jù)補集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關(guān)鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.6、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.7、D【解析】
如圖所示,設(shè)的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.8、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.9、D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因為,所以當(dāng)且僅當(dāng)時,取最大值,又對所有成立,所以,解得,故選:D.【點睛】本題綜合考查了隨機變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識,需要學(xué)生具備一定的計算能力,屬于中檔題.10、A【解析】
先利用復(fù)數(shù)的除法運算法則求出的值,再利用共軛復(fù)數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.11、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.12、A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
類比,三角形邊長類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點睛】本題考查類比推理.類比正弦定理可得,類比時有結(jié)構(gòu)類比,方法類比等.14、【解析】
根據(jù)題意求出點N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.15、【解析】
結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進(jìn)一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.16、【解析】
由,解得,進(jìn)而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎(chǔ)知識;考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)當(dāng)時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時,,原不等式可化為,①當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時;當(dāng)時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當(dāng)且僅當(dāng),即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.18、(I);(Ⅱ)【解析】
(Ⅰ)設(shè)等差數(shù)列的公差為,則依題設(shè).由,可得.由,得,可得.所以.可得.(Ⅱ)設(shè),則.即,可得,且.所以,可知.所以,所以數(shù)列是首項為4,公比為2的等比數(shù)列.所以前項和.考點:等差數(shù)列通項公式、用數(shù)列前項和求數(shù)列通項公式.19、(1)證明見解析;(2)證明見解析;【解析】
(1)推導(dǎo)出,由是的中點,能證明是有中點.(2)作于點,推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點,是有中點.(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點睛】本題考查線段中點的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.20、(1)或(2).【解析】
(1)根據(jù)題意分斜率不存在和斜率存在兩種情況即可求得結(jié)果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當(dāng)斜率不存在時,直線的方程為,滿足題意當(dāng)斜率存在時,設(shè)直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當(dāng)直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【點睛】本題考查了直線的方程、直線與圓的位置關(guān)系、點到直線的距離公式及
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度砂石料運輸及工地現(xiàn)場清理服務(wù)協(xié)議
- 二零二五年度智能工廠臨時工就業(yè)合同4篇
- 2025年度廠房折疊門研發(fā)成果轉(zhuǎn)化與技術(shù)合作合同4篇
- 個人培訓(xùn)費用繳納協(xié)議模板版B版
- 2025年度二零二五煤炭產(chǎn)業(yè)技術(shù)創(chuàng)新合同4篇
- 二零二五年智能薦設(shè)備購置與技術(shù)培訓(xùn)合同3篇
- 《“探界者”鐘揚》說課稿 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 9《這些是大家的》第一課時說課稿-2024-2025學(xué)年道德與法治二年級上冊統(tǒng)編版
- 二零二四年度快樂教育在線教育平臺建設(shè)合同
- 二零二五版?zhèn)€人住房抵押擔(dān)保合同范本3篇
- 老年人視覺障礙護(hù)理
- 《腦梗塞的健康教育》課件
- 《請柬及邀請函》課件
- 中小銀行上云趨勢研究分析報告
- 遼寧省普通高中2024-2025學(xué)年高一上學(xué)期12月聯(lián)合考試語文試題(含答案)
- 青海原子城的課程設(shè)計
- 常州大學(xué)《新媒體文案創(chuàng)作與傳播》2023-2024學(xué)年第一學(xué)期期末試卷
- 麻醉蘇醒期躁動患者護(hù)理
- 英語雅思8000詞匯表
- 小學(xué)好詞好句好段摘抄(8篇)
- JT-T-1059.1-2016交通一卡通移動支付技術(shù)規(guī)范第1部分:總則
評論
0/150
提交評論