![2024屆湖南平江二中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第1頁](http://file4.renrendoc.com/view4/M00/15/23/wKhkGGYjFReAXvohAAJBzxbV5Rw945.jpg)
![2024屆湖南平江二中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第2頁](http://file4.renrendoc.com/view4/M00/15/23/wKhkGGYjFReAXvohAAJBzxbV5Rw9452.jpg)
![2024屆湖南平江二中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第3頁](http://file4.renrendoc.com/view4/M00/15/23/wKhkGGYjFReAXvohAAJBzxbV5Rw9453.jpg)
![2024屆湖南平江二中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第4頁](http://file4.renrendoc.com/view4/M00/15/23/wKhkGGYjFReAXvohAAJBzxbV5Rw9454.jpg)
![2024屆湖南平江二中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷含解析_第5頁](http://file4.renrendoc.com/view4/M00/15/23/wKhkGGYjFReAXvohAAJBzxbV5Rw9455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆湖南平江二中高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線(a>0,b>0)的一個(gè)焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.2.已知為兩條不重合直線,為兩個(gè)不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.3.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.4.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.5.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)為拋物線上任意一點(diǎn)的平分線與軸交于,則的最大值為A. B. C. D.7.一艘海輪從A處出發(fā),以每小時(shí)24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點(diǎn)間的距離是()A.6海里 B.6海里 C.8海里 D.8海里8.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.149.某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項(xiàng)正確的是()A. B. C. D.10.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.11.已知a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個(gè)坐位的寬度(),每個(gè)座位寬度為,估計(jì)彎管的長度,下面的結(jié)果中最接近真實(shí)值的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足約束條件則的最大值為________.14.3張獎(jiǎng)券分別標(biāo)有特等獎(jiǎng)、一等獎(jiǎng)和二等獎(jiǎng).甲、乙兩人同時(shí)各抽取1張獎(jiǎng)券,兩人都未抽得特等獎(jiǎng)的概率是__________.15.已知向量,滿足,,,則向量在的夾角為______.16.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.18.(12分)已知a,b∈R,設(shè)函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當(dāng)x∈[0,+∞)時(shí),f(x)的最小值為0,求a+5b的最大值.注:19.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.20.(12分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.21.(12分)語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實(shí)現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學(xué)”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關(guān)聯(lián)程度,從某地區(qū)隨機(jī)抽取了100名購買“小愛同學(xué)”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛同學(xué)”智能音箱“天貓精靈”智能音箱合計(jì)男4560105女554095合計(jì)100100200(1)若該地區(qū)共有13000人購買了“小愛同學(xué)”,有12000人購買了“天貓精靈”,試估計(jì)該地區(qū)購買“小愛同學(xué)”的女性比購買“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認(rèn)為購買“小愛同學(xué)”、“天貓精靈”與性別有關(guān)?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82822.(10分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個(gè)特征向量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.2、D【解析】
根據(jù)面面垂直的判定定理,對選項(xiàng)中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時(shí),則平面與平面可能相交,,,故不能作為的充分條件,故A錯(cuò)誤;對于B,當(dāng),,時(shí),則,故不能作為的充分條件,故B錯(cuò)誤;對于C,當(dāng),,時(shí),則平面與平面相交,,,故不能作為的充分條件,故C錯(cuò)誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點(diǎn)睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.3、A【解析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.4、D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.5、A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因?yàn)楹愠闪ⅲ士梢酝瞥銮?,若成立,?dāng)時(shí),有,當(dāng)時(shí),有,因?yàn)楹愠闪ⅲ杂?,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.6、A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線方程為x=?1,
過點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時(shí),,當(dāng)時(shí),,,綜上:.故選:A.【點(diǎn)睛】本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力,屬于中檔題.7、A【解析】
先根據(jù)給的條件求出三角形ABC的三個(gè)內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點(diǎn)睛】本題考查正弦定理的實(shí)際應(yīng)用,關(guān)鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.8、A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.9、C【解析】
計(jì)算出、,進(jìn)而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點(diǎn)睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.10、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.11、D【解析】
根據(jù)面面平行的判定及性質(zhì)求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點(diǎn)睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質(zhì),屬于基礎(chǔ)題.12、B【解析】
為彎管,為6個(gè)座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個(gè)座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長所以是最接近的,其中選項(xiàng)A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點(diǎn)睛】本題考查了弧長公式,需熟記公式,考查了學(xué)生的分析問題的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】
利用排列組合公式進(jìn)行計(jì)算,再利用古典概型公式求出不是特等獎(jiǎng)的兩張的概率即可.【詳解】解:3張獎(jiǎng)券分別標(biāo)有特等獎(jiǎng)、一等獎(jiǎng)和二等獎(jiǎng),甲、乙兩人同時(shí)各抽取1張獎(jiǎng)券,則兩人同時(shí)抽取兩張共有:種排法排除特等獎(jiǎng)外兩人選兩張共有:種排法.故兩人都未抽得特等獎(jiǎng)的概率是:故答案為:【點(diǎn)睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.15、【解析】
把平方利用數(shù)量積的運(yùn)算化簡即得解.【詳解】因?yàn)?,,,所以,∴,∴,因?yàn)樗?故答案為:【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.16、【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)?,,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時(shí),,,單調(diào)遞增,當(dāng),時(shí),,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.18、(I)詳見解析;(II)2【解析】
(I)求導(dǎo)得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當(dāng)a≤0時(shí),f'(x)=e當(dāng)a>0時(shí),f'(x)=ex-a=0,x=lna當(dāng)x∈lna,+∞時(shí),綜上所述:a≤0時(shí),fx在R上單調(diào)遞增;a>0時(shí),fx在-∞,ln(II)f(x)=ex-ax-bf12=現(xiàn)在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當(dāng)x∈0,+∞上時(shí),x2+1f'x在x∈0,+∞上單調(diào)遞增,故fx在0,12上單調(diào)遞減,在1綜上所述:a+5b的最大值為【點(diǎn)睛】本題考查了函數(shù)單調(diào)性,函數(shù)的最值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1);(2)【解析】
(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點(diǎn)睛】本題考查運(yùn)用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運(yùn)用其公式,合理地選擇進(jìn)行邊角互化,屬于基礎(chǔ)題.20、(1)見解析(2)見解析【解析】
(1)取的中點(diǎn)D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點(diǎn),由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點(diǎn)D,連結(jié),.在中,P,D分別為,中點(diǎn),,且.在直三棱柱中,,.Q
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度知識產(chǎn)權(quán)授權(quán)居間合同模板
- 2025年度全球高新技術(shù)轉(zhuǎn)讓與市場推廣服務(wù)合同
- 2025年度光纜施工環(huán)境保護(hù)與節(jié)能降耗合同
- 2025年度環(huán)保建材公司股權(quán)轉(zhuǎn)讓與綠色建材推廣合同
- 2025年度互聯(lián)網(wǎng)企業(yè)對個(gè)人投資借款合同
- 2025年度戶外廣告牌廣告內(nèi)容審查與發(fā)布管理合同
- 2025年度城市軌道交通工程合同補(bǔ)充協(xié)議示范文本
- 2025年度空壓機(jī)設(shè)備銷售與節(jié)能環(huán)保認(rèn)證合同
- 2025年度旅游度假區(qū)土地使用權(quán)出讓轉(zhuǎn)讓合同
- 2025年度深海捕撈海產(chǎn)品銷售合同范本
- 中國食物成分表2018年(標(biāo)準(zhǔn)版)第6版
- 九三學(xué)社申請入社人員簡歷表
- 卓有成效的管理者讀后感3000字
- 七年級下冊-備戰(zhàn)2024年中考?xì)v史總復(fù)習(xí)核心考點(diǎn)與重難點(diǎn)練習(xí)(統(tǒng)部編版)
- 北師大版小學(xué)六年級數(shù)學(xué)下冊同步教案 (表格式全冊)
- 巖土工程勘察服務(wù)投標(biāo)方案(技術(shù)方案)
- 實(shí)驗(yàn)室儀器設(shè)備驗(yàn)收單
- 新修訂藥品GMP中藥飲片附錄解讀課件
- 蒙特利爾認(rèn)知評估量表北京版
- 領(lǐng)導(dǎo)干部個(gè)人有關(guān)事項(xiàng)報(bào)告表(模板)
- GB/T 7631.18-2017潤滑劑、工業(yè)用油和有關(guān)產(chǎn)品(L類)的分類第18部分:Y組(其他應(yīng)用)
評論
0/150
提交評論