安徽省六安市裕安區(qū)2024年中考數(shù)學全真模擬試卷含解析_第1頁
安徽省六安市裕安區(qū)2024年中考數(shù)學全真模擬試卷含解析_第2頁
安徽省六安市裕安區(qū)2024年中考數(shù)學全真模擬試卷含解析_第3頁
安徽省六安市裕安區(qū)2024年中考數(shù)學全真模擬試卷含解析_第4頁
安徽省六安市裕安區(qū)2024年中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省六安市裕安區(qū)2024年中考數(shù)學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的幾何體的俯視圖是(

)A. B. C. D.2.人的大腦每天能記錄大約8600萬條信息,數(shù)據(jù)8600用科學記數(shù)法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1023.如圖,某同學不小心把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.帶③去 B.帶②去 C.帶①去 D.帶①②去4.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.5.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<46.關于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當時,函數(shù)值隨著的增大而增大; D.當時,.7.“嫦娥一號”衛(wèi)星順利進入繞月工作軌道,行程約有1800000千米,1800000這個數(shù)用科學記數(shù)法可以表示為A. B. C. D.8.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉,記旋轉后的△BCE為△BC′E′.當線段BE′和線段BC′都與線段AD相交時,設交點分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.9.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.10.北京故宮的占地面積達到720000平方米,這個數(shù)據(jù)用科學記數(shù)法表示為()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米11.如圖,在平面直角坐標系中,把△ABC繞原點O旋轉180°得到△CDA,點A,B,C的坐標分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點D的坐標為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)12.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A.45° B.60° C.70° D.90°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.14.用一條長60cm的繩子圍成一個面積為216的矩形.設矩形的一邊長為xcm,則可列方程為______.15.點A(a,3)與點B(﹣4,b)關于原點對稱,則a+b=()A.﹣1 B.4 C.﹣4 D.116.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.17.如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于____度.18.如圖,DA⊥CE于點A,CD∥AB,∠1=30°,則∠D=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某市扶貧辦在精準扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:產(chǎn)品名稱核桃花椒甘藍每輛汽車運載量(噸)1064每噸土特產(chǎn)利潤(萬元)0.70.80.5若裝運核桃的汽車為x輛,裝運甘藍的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設30輛車裝運的三種產(chǎn)品的總利潤為y萬元.(1)求y與x之間的函數(shù)關系式;(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利潤最大值.20.(6分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.21.(6分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點C的坐標及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.22.(8分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結果;(2)求一次打開鎖的概率.23.(8分)某青春黨支部在精準扶貧活動中,給結對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.求甲、乙兩種樹苗每棵的價格各是多少元?在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?24.(10分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數(shù)的圖象上的概率.25.(10分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數(shù)關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).26.(12分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數(shù)表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最???若存在,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.27.(12分)在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結論.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據(jù)俯視圖是從上往下看得到的圖形解答即可.【詳解】從上往下看得到的圖形是:故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線2、C【解析】

科學記數(shù)法就是將一個數(shù)字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】數(shù)據(jù)8600用科學記數(shù)法表示為8.6×103故選C.【點睛】用科學記數(shù)法表示一個數(shù)的方法是(1)確定a:a是只有一位整數(shù)的數(shù);(2)確定n:當原數(shù)的絕對值≥10時,n為正整數(shù),n等于原數(shù)的整數(shù)位數(shù)減1;當原數(shù)的絕對值<1時,n為負整數(shù),n的絕對值等于原數(shù)中左起第一個非零數(shù)前零的個數(shù)(含整數(shù)位數(shù)上的零).3、A【解析】

第一塊和第二塊只保留了原三角形的一個角和部分邊,根據(jù)這兩塊中的任一塊均不能配一塊與原來完全一樣的;第三塊不僅保留了原來三角形的兩個角還保留了一邊,則可以根據(jù)ASA來配一塊一樣的玻璃.【詳解】③中含原三角形的兩角及夾邊,根據(jù)ASA公理,能夠唯一確定三角形.其它兩個不行.故選:A.【點睛】此題主要考查全等三角形的運用,熟練掌握,即可解題.4、B【解析】

連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.5、C【解析】

先根據(jù)正方形的面積公式求邊長,再根據(jù)無理數(shù)的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數(shù)的理解,會估算無理數(shù)的大小是解題的關鍵.6、C【解析】

直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數(shù)y=-,當x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關于反比例函數(shù)y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關函數(shù)的性質(zhì)是解題關鍵.7、C【解析】分析:一個絕對值大于10的數(shù)可以表示為的形式,其中為整數(shù).確定的值時,整數(shù)位數(shù)減去1即可.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:1800000這個數(shù)用科學記數(shù)法可以表示為故選C.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.8、A【解析】

先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點睛】本題考查了旋轉的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準確作出輔助線是解題關鍵.9、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點:簡單組合體的三視圖.10、D【解析】試題分析:把一個數(shù)記成a×10n(1≤a<10,n整數(shù)位數(shù)少1)的形式,叫做科學記數(shù)法.∴此題可記為1.2×105平方米.考點:科學記數(shù)法11、A【解析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過點O,依據(jù)B的坐標為(﹣2,﹣2),即可得出D的坐標為(2,2).詳解:∵點A,C的坐標分別為(﹣5,2),(5,﹣2),∴點O是AC的中點,∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過點O,∵B的坐標為(﹣2,﹣2),∴D的坐標為(2,2),故選A.點睛:本題主要考查了坐標與圖形變化,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質(zhì)來求出旋轉后的點的坐標.12、D【解析】已知△ABC繞點A按逆時針方向旋轉l20°得到△AB′C′,根據(jù)旋轉的性質(zhì)可得∠BAB′=∠CAC′=120°,AB=AB′,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先求出OA的長度,然后利用含30°的直角三角形的性質(zhì)得到點D的坐標,探索規(guī)律,從而得到的坐標即可.【詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【點睛】本題主要考查含30°的直角三角形的性質(zhì),找到點的坐標規(guī)律是解題的關鍵.14、【解析】

根據(jù)周長表達出矩形的另一邊,再根據(jù)矩形的面積公式即可列出方程.【詳解】解:由題意可知,矩形的周長為60cm,∴矩形的另一邊為:,∵面積為216,∴故答案為:.【點睛】本題考查了一元二次方程與實際問題,解題的關鍵是找出等量關系.15、1【解析】

據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得a、b的值,然后再計算a+b即可.【詳解】∵點A(a,3)與點B(﹣4,b)關于原點對稱,∴a=4,b=﹣3,∴a+b=1,故選D.【點睛】考查關于原點對稱的點的坐標特征,橫坐標、縱坐標都互為相反數(shù).16、【解析】

連接,根據(jù)勾股定理知,可得當時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關鍵.17、30【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得:AE=CE,根據(jù)折疊可得:BC=CE,則BC=AE=BE=AB,則∠A=30°.考點:折疊圖形的性質(zhì)18、60°【解析】

先根據(jù)垂直的定義,得出∠BAD=60°,再根據(jù)平行線的性質(zhì),即可得出∠D的度數(shù).【詳解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案為60°.【點睛】本題主要考查了平行線的性質(zhì)以及垂線的定義,解題時注意:兩直線平行,內(nèi)錯角相等.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣3.4x+141.1;(1)當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【解析】

(1)根據(jù)題意可以得裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,從而可以得到y(tǒng)與x的函數(shù)關系式;(1)根據(jù)裝花椒的汽車不超過8輛,可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,從而可以得到總利潤最大時,裝運各種產(chǎn)品的車輛數(shù).【詳解】(1)若裝運核桃的汽車為x輛,則裝運甘藍的汽車為(1x+1)輛,裝運花椒的汽車為30﹣x﹣(1x+1)=(12﹣3x)輛,根據(jù)題意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.(1)根據(jù)題意得:,解得:7≤x≤,∵x為整數(shù),∴7≤x≤2.∵10.6>0,∴y隨x增大而減小,∴當x=7時,y取最大值,最大值=﹣3.4×7+141.1=117.4,此時:1x+1=12,12﹣3x=1.答:當裝運核桃的汽車為2輛、裝運甘藍的汽車為12輛、裝運花椒的汽車為1輛時,總利潤最大,最大利潤為117.4萬元.【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是熟練的掌握一次函數(shù)的應用.20、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關鍵.21、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】

(1)先把B點坐標代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點的坐標特征確定C點坐標,然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進行計算;(3)觀察函數(shù)圖象得到當﹣4<x<0或x>2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點坐標為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當﹣x﹣2=0時,x=﹣2,∴點C的坐標為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點問題以及待定系數(shù)法的運用,靈活運用待定系數(shù)法是解題的關鍵,注意數(shù)形結合思想的正確運用.22、(1)詳見解析(2)【解析】

設兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出樹形圖,再根據(jù)概率公式求解即可.【詳解】(1)設兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出如下樹形圖:由上圖可知,上述試驗共有8種等可能結果;(2)由(1)可知,任意取出一把鑰匙去開任意一把鎖共有8種可能的結果,一次打開鎖的結果有2種,且所有結果的可能性相等.∴P(一次打開鎖)=.【點睛】如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.23、(1)甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)他們最多可購買11棵乙種樹苗.【解析】

(1)可設甲種樹苗每棵的價格是x元,則乙種樹苗每棵的價格是(x+10)元,根據(jù)等量關系:用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同,列出方程求解即可;(2)可設他們可購買y棵乙種樹苗,根據(jù)不等關系:再次購買兩種樹苗的總費用不超過1500元,列出不等式求解即可.【詳解】(1)設甲種樹苗每棵的價格是x元,則乙種樹苗每棵的價格是(x+10)元,依題意有480x+10解得:x=30,經(jīng)檢驗,x=30是原方程的解,x+10=30+10=40,答:甲種樹苗每棵的價格是30元,乙種樹苗每棵的價格是40元;(2)設他們可購買y棵乙種樹苗,依題意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11713∵y為整數(shù),∴y最大為11,答:他們最多可購買11棵乙種樹苗.【點睛】本題考查了分式方程的應用,一元一次不等式的應用,弄清題意,找準等量關系與不等關系列出方程或不等式是解決問題的關鍵.24、見解析;.【解析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數(shù)的圖象上的有、、這3種結果,點在函數(shù)的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.25、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】

(1)根據(jù)線段的垂直平分線的性質(zhì)以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【點睛】本題考查圓綜合題、相似三角形的判定和性質(zhì)、垂徑定理、線段的垂直平分線的性質(zhì)、菱形的判定和性質(zhì)、勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會用分類討論的思想思考問題.26、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】

(1)令拋物線y=x1-1x-3=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論