版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省部分地區(qū)重點中學中考五模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.是兩個連續(xù)整數,若,則分別是().A.2,3 B.3,2 C.3,4 D.6,82.如圖,已知函數與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.3.的相反數是()A.2 B.﹣2 C.4 D.﹣4.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.125.小剛從家去學校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車勻速行駛一段時后到達學校,小剛從家到學校行駛路程s(單位:m)與時間r(單位:min)之間函數關系的大致圖象是()A. B. C. D.6.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m37.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.8.cos45°的值是(
)A.
B.
C.
D.19.關于反比例函數,下列說法正確的是()A.函數圖像經過點(2,2); B.函數圖像位于第一、三象限;C.當時,函數值隨著的增大而增大; D.當時,.10.在半徑等于5cm的圓內有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°11.如圖,點E在△DBC的邊DB上,點A在△DBC內部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④12.如圖所示:有理數在數軸上的對應點,則下列式子中錯誤的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:3ax2﹣3ay2=_____.14.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.15.如圖,已知△ABC,AB=6,AC=5,D是邊AB的中點,E是邊AC上一點,∠ADE=∠C,∠BAC的平分線分別交DE、BC于點F、G,那么的值為__________.16.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是_____.17.如果一個扇形的弧長等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為.18.如圖,△ABC中,過重心G的直線平行于BC,且交邊AB于點D,交邊AC于點E,如果設=,=,用,表示,那么=___.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:每人銷售件數1800510250210150120人數113532(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;假設銷售負責人把每位營銷員的月銷售額定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.20.(6分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統(tǒng)計圖.類別頻數(人數)頻率小說0.5戲劇4散文100.25其他6合計1根據圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.21.(6分)如圖,已知A(a,4),B(﹣4,b)是一次函數與反比例函數圖象的兩個交點.(1)若a=1,求反比例函數的解析式及b的值;(2)在(1)的條件下,根據圖象直接回答:當x取何值時,反比例函數大于一次函數的值?(3)若a﹣b=4,求一次函數的函數解析式.22.(8分)如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DE∥AB交AC于點F,CE∥AM,連結AE.(1)如圖1,當點D與M重合時,求證:四邊形ABDE是平行四邊形;(2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.(3)如圖3,延長BD交AC于點H,若BH⊥AC,且BH=AM.①求∠CAM的度數;②當FH=,DM=4時,求DH的長.23.(8分)某區(qū)教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績?yōu)闃颖?,按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數是;(3)請把條形統(tǒng)計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.24.(10分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點O,再以點O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關系,直接寫出結果.25.(10分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)B點坐標為,并求拋物線的解析式;(2)求線段PC長的最大值;(3)若△PAC為直角三角形,直接寫出此時點P的坐標.26.(12分)小明和小亮玩一個游戲:取三張大小、質地都相同的卡片,上面分別標有數字2、3、4(背面完全相同),現(xiàn)將標有數字的一面朝下.小明從中任意抽取一張,記下數字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數字之和.請你用畫樹狀圖或列表的方法,求出這兩數和為6的概率.如果和為奇數,則小明勝;若和為偶數,則小亮勝.你認為這個游戲規(guī)則對雙方公平嗎?做出判斷,并說明理由.27.(12分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據,可得答案.【詳解】根據題意,可知,可得a=2,b=1.故選A.【點睛】本題考查了估算無理數的大小,明確是解題關鍵.2、A【解析】
由題意,因為與反比例函數都是關于直線對稱,推出A與B關于直線對稱,推出,可得,求出m即可解決問題;【詳解】函數與的圖象在第二象限交于點,點與反比例函數都是關于直線對稱,與B關于直線對稱,,,點故選:A.【點睛】本題考查反比例函數與一次函數的交點問題,反比例函數的圖像與性質,圓的對稱性及軸對稱的性質.解題的關鍵是靈活運用所學知識解決問題,本題的突破點是發(fā)現(xiàn)A,B關于直線對稱.3、A【解析】分析:根據只有符號不同的兩個數是互為相反數解答即可.詳解:的相反數是,即2.故選A.點睛:本題考查了相反數的定義,解答本題的關鍵是熟練掌握相反數的定義,正數的相反數是負數,0的相反數是0,負數的相反數是正數.4、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質,3、勾股定理,4、平行線的性質5、B【解析】【分析】根據小剛行駛的路程與時間的關系,確定出圖象即可.【詳解】小剛從家到學校,先勻速步行到車站,因此S隨時間t的增長而增長,等了幾分鐘后坐上了公交車,因此時間在增加,S不增長,坐上了公交車,公交車沿著公路勻速行駛一段時間后到達學校,因此S又隨時間t的增長而增長,故選B.【點睛】本題考查了函數的圖象,認真分析,理解題意,確定出函數圖象是解題的關鍵.6、C【解析】
根據同底數冪的除法,底數不變指數相減;合并同類項,系數相加字母和字母的指數不變;同底數冪的乘法,底數不變指數相加;冪的乘方,底數不變指數相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數冪的除法,合并同類項,同底數冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.7、B【解析】
先找出滑雪項目圖案的張數,結合5張形狀、大小、質地均相同的卡片,再根據概率公式即可求解.【詳解】∵有5張形狀、大小、質地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.【點睛】本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數與總情況數之比.8、C【解析】
本題主要是特殊角的三角函數值的問題,求解本題的關鍵是熟悉特殊角的三角函數值.【詳解】cos45°=.故選:C.【點睛】本題考查特殊角的三角函數值.9、C【解析】
直接利用反比例函數的性質分別分析得出答案.【詳解】A、關于反比例函數y=-,函數圖象經過點(2,-2),故此選項錯誤;B、關于反比例函數y=-,函數圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數y=-,當x>0時,函數值y隨著x的增大而增大,故此選項正確;D、關于反比例函數y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數的性質,正確掌握相關函數的性質是解題關鍵.10、C【解析】
根據題意畫出相應的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數定義及特殊角的三角函數值求出∠AOD的度數,進而確定出∠AOB的度數,利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數.【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數值,以及銳角三角函數定義,熟練掌握垂徑定理是解本題的關鍵.11、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點睛:本題考查全等三角形的判定和性質、勾股定理、等腰直角三角形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.12、C【解析】
從數軸上可以看出a、b都是負數,且a<b,由此逐項分析得出結論即可.【詳解】由數軸可知:a<b<0,A、兩數相乘,同號得正,ab>0是正確的;
B、同號相加,取相同的符號,a+b<0是正確的;
C、a<b<0,,故選項是錯誤的;
D、a-b=a+(-b)取a的符號,a-b<0是正確的.
故選:C.【點睛】此題考查有理數的混合運算,數軸,解題關鍵在于結合數軸進行解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3a(x+y)(x-y)【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.14、1.【解析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標是(b,0),設A的坐標是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數綜合題,用到的知識點有:一次函數的平移規(guī)律,一次函數與反比例函數的交點坐標,利用了轉化及方程的思想,其中利用平移的規(guī)律表示出y=x平移后的解析式是解答本題的關鍵.15、【解析】
由題中所給條件證明△ADF△ACG,可求出的值.【詳解】解:在△ADF和△ACG中,AB=6,AC=5,D是邊AB的中點AG是∠BAC的平分線,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案為.【點睛】本題考查了相似三角形的判定和性質,難度適中,需熟練掌握.16、【解析】分析:直接利用中心對稱圖形的性質結合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對稱圖形,∴從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是:.故答案為.點睛:此題主要考查了中心對稱圖形的性質和概率求法,正確把握中心對稱圖形的定義是解題關鍵.17、1【解析】試題分析:根據題意可得圓心角的度數為:,則S==1.考點:扇形的面積計算.18、【解析】
連接AG,延長AG交BC于F.首先證明DG=GE,再利用三角形法則求出即可解決問題.【詳解】連接AG,延長AG交BC于F.
∵G是△ABC的重心,DE∥BC,
∴BF=CF,
,
∵,,
∴,
∵BF=CF,
∴DG=GE,
∵,,
∴,
∴,
故答案為.【點睛】本題考查三角形的重心,平行線的性質,平面向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)平均數為320件,中位數是210件,眾數是210件;(2)不合理,定210件【解析】試題分析:(1)根據平均數、中位數和眾數的定義即可求得結果;(2)把月銷售額320件與大部分員工的工資比較即可判斷.(1)平均數件,∵最中間的數據為210,∴這組數據的中位數為210件,∵210是這組數據中出現(xiàn)次數最多的數據,∴眾數為210件;(2)不合理,理由:在15人中有13人銷售額達不到320件,定210件較為合理.考點:本題考查的是平均數、眾數和中位數點評:解答本題的關鍵是熟練掌握找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現(xiàn)次數最多的數據,注意眾數可以不止一個.20、(1)41(2)15%(3)【解析】
(1)用散文的頻數除以其頻率即可求得樣本總數;(2)根據其他類的頻數和總人數求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數,找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.21、(1)反比例函數的解析式為y=,b的值為﹣1;(1)當x<﹣4或0<x<1時,反比例函數大于一次函數的值;(3)一次函數的解析式為y=x+1【解析】
(1)由題意得到A(1,4),設反比例函數的解析式為y=(k≠0),根據待定系數法即可得到反比例函數解析式為y=;再由點B(﹣4,b)在反比例函數的圖象上,得到b=﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),結合圖象即可得到答案;(3)設一次函數的解析式為y=mx+n(m≠0),反比例函數的解析式為y=,因為A(a,4),B(﹣4,b)是一次函數與反比例函數圖象的兩個交點,得到,解得p=8,a=1,b=﹣1,則A(1,4),B(﹣4,﹣1),由點A、點B在一次函數y=mx+n圖象上,得到,解得,即可得到答案.【詳解】(1)若a=1,則A(1,4),設反比例函數的解析式為y=(k≠0),∵點A在反比例函數的圖象上,∴4=,解得k=4,∴反比例函數解析式為y=;∵點B(﹣4,b)在反比例函數的圖象上,∴b==﹣1,即反比例函數的解析式為y=,b的值為﹣1;(1)由(1)知A(1,4),B(﹣4,﹣1),根據圖象:當x<﹣4或0<x<1時,反比例函數大于一次函數的值;(3)設一次函數的解析式為y=mx+n(m≠0),反比例函數的解析式為y=,∵A(a,4),B(﹣4,b)是一次函數與反比例函數圖象的兩個交點,∴,即,①+②得4a﹣4b=1p,∵a﹣b=4,∴16=1p,解得p=8,把p=8代入①得4a=8,代入②得﹣4b=8,解得a=1,b=﹣1,∴A(1,4),B(﹣4,﹣1),∵點A、點B在一次函數y=mx+n圖象上,∴解得∴一次函數的解析式為y=x+1.【點睛】本題考查一次函數與反比例函數,解題的關鍵是待定系數法求函數解析式.22、(1)證明見解析;(2)結論:成立.理由見解析;(3)①30°,②1+.【解析】
(1)只要證明AB=ED,AB∥ED即可解決問題;(2)成立.如圖2中,過點M作MG∥DE交CE于G.由四邊形DMGE是平行四邊形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四邊形ABDE是平行四邊形;
(3)①如圖3中,取線段HC的中點I,連接MI,只要證明MI=AM,MI⊥AC,即可解決問題;②設DH=x,則AH=x,AD=2x,推出AM=4+2x,BH=4+2x,由四邊形ABDE是平行四邊形,推出DF∥AB,推出,可得,解方程即可;【詳解】(1)證明:如圖1中,∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中線,且D與M重合,∴BD=DC,∴△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四邊形ABDE是平行四邊形.(2)結論:成立.理由如下:如圖2中,過點M作MG∥DE交CE于G.∵CE∥AM,∴四邊形DMGE是平行四邊形,∴ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,∴AB∥DE,AB=DE,∴四邊形ABDE是平行四邊形.(3)①如圖3中,取線段HC的中點I,連接MI,∵BM=MC,∴MI是△BHC的中位線,∴MI∥BH,MI=BH,∵BH⊥AC,且BH=AM.∴MI=AM,MI⊥AC,∴∠CAM=30°.②設DH=x,則AH=x,AD=2x,∴AM=4+2x,∴BH=4+2x,∵四邊形ABDE是平行四邊形,∴DF∥AB,∴,∴,解得x=1+或1﹣(舍棄),∴DH=1+.【點睛】本題考查了四邊形綜合題、平行四邊形的判定和性質、直角三角形30度角的判定、平行線分線成比例定理、三角形的中位線定理等知識,解題的關鍵能正確添加輔助線,構造特殊四邊形解決問題.23、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】
解:(1)根據題意得:
D級的學生人數占全班人數的百分比是:
1-20%-46%-24%=10%;
(2)A級所在的扇形的圓心角度數是:20%×360°=72°;
(3)∵A等人數為10人,所占比例為20%,
∴抽查的學生數=10÷20%=50(人),
∴D級的學生人數是50×10%=5(人),
補圖如下:
(4)根據題意得:
體育測試中A級和B級的學生人數之和是:500×(20%+46%)=330(名),
答:體育測試中A級和B級的學生人數之和是330名.【點睛】本題考查統(tǒng)計的知識,要求考生會識別條形統(tǒng)計圖和扇形統(tǒng)計圖.24、(1)見解析(2)相切【解析】
(1)首先利用角平分線的作法得出CO,進而以點O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質以及直線與圓的位置關系進而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點作OD⊥AC于D點,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點睛】此題主要考查了復雜作圖以及角平分線的性質與作法和直線與圓的位置關系,正確利用角平分線的性質求出d=r是解題關鍵.25、(1)(4,6);y=1x1﹣8x+6(1);(3)點P的坐標為(3,5)或().【解析】
(1)已知B(4,m)在直線y=x+1上,可求得m的值,拋物線圖象上的A、B兩點坐標,可將其代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數的值.(1)要弄清PC的長,實際是直線AB與拋物線函數值的差.可設出P點橫坐標,根據直線AB和拋物線的解析式表示出P、C的縱坐標,進而得到關于PC與P點橫坐標的函數關系式,根據函數的性質即可求出PC的最大值.(3)根據頂點問題分情況討論,若點P為直角頂點,此圖形不存在,若點A為直角頂點,根據已知解析式與點坐標,可求出未知解析式,再聯(lián)立拋物線的解析式,可求得C點的坐標;若點C為直角頂點,可根據點的對稱性求出結論.【詳解】解:(1)∵B(4,m)在直線y=x+1上,∴m=4+1=6,∴B(4,6),故答案為(4,6);∵A(,),B(4,6)在拋物線y=ax1+bx+6上,∴,解得,∴拋物線的解析式為y=1x1﹣8x+6;(1)設動點P的坐標為(n,n+1),則C點的坐標為(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴當n=時,線段PC最大且為.(3)∵△PAC為直角三角形,i)若點P為直角頂點,則∠APC=90°.由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;ii)若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=1x1﹣8x+6②聯(lián)立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當x=3時,y=x+1=5,∴P1(3,5);iii)若點C為直角頂點,則∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴拋物線的對稱軸為直線x=1.如圖1,作點A(,)關于對稱軸x=1的對稱點C,則點C在拋物線上,且C(,).當x=時,y=x+1=.∴P1(,).∵點P1(3,5)、P1(,)均在線段AB上,∴綜上所述,△PAC為直角三角形時,點P的坐標為(3,5)或(,).【點睛】本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度上海租車租賃合同含長途過路費代繳
- 二零二五版年薪制勞動合同法實施細則與員工保密責任條款4篇
- 二零二五年度旅游民宿運營免責合同協(xié)議
- 2025年度個人商鋪租賃合同范本:含裝修補貼及設施設備清單4篇
- 2025年度生態(tài)公園土建項目施工合同
- 2025年度民間個人借款擔保合同范本:信用擔保與風險分擔
- 二零二五年度農用拖拉機二手市場評估與交易合同3篇
- 2025年度農民專業(yè)合作社股權并購與整合合同4篇
- 2025年度個人房產買賣風險評估合同范本2篇
- 2025年度個人知識產權許可使用合同范本9篇
- 趣味知識問答100道
- 鋼管豎向承載力表
- 2024年新北師大版八年級上冊物理全冊教學課件(新版教材)
- 人教版數學四年級下冊核心素養(yǎng)目標全冊教學設計
- JJG 692-2010無創(chuàng)自動測量血壓計
- 三年級下冊口算天天100題(A4打印版)
- 徐州市2023-2024學年八年級上學期期末地理試卷(含答案解析)
- CSSD職業(yè)暴露與防護
- 飲料對人體的危害1
- 數字經濟學導論-全套課件
- 移動商務內容運營(吳洪貴)項目三 移動商務運營內容的策劃和生產
評論
0/150
提交評論