盒子里的思考網(wǎng)絡(luò)TE人工智能_第1頁
盒子里的思考網(wǎng)絡(luò)TE人工智能_第2頁
盒子里的思考網(wǎng)絡(luò)TE人工智能_第3頁
盒子里的思考網(wǎng)絡(luò)TE人工智能_第4頁
盒子里的思考網(wǎng)絡(luò)TE人工智能_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

ThinkingintheBox

ArtificialIntelligenceforCyberT&E

PresentedbyTurinPollard,EvelynRockwell,andChrisMilroyAlionScienceandTechnology

Roadmap

WhatismodernAi?

Whyiscybersohard?

HowcanAihelp?

SLIDE2

What?|ErasofAi

ArtificialIntelligence

Rules

1950

MachineLearning

Models

1980

DeepLearning

Networks

2010

SLIDE3

What?|WorkingDefinitions

Artificialintelligence(Ai):doingwithcomputerstaskscommonlybelievedtorequireintelligence

Machinelearning(ML):Aisystemsthatprogressivelyimprovetheirperformancewithdata

Training:runningdatathroughanMLsystemuntilitreachesstableandacceptableperformance

SLIDE4

What?|MachineLearning

Coregoal:generalizefromtrainingdatatomissiondata

Distinctfrompureoptimization

Designedtobeexecutedbymachines

Manyfunctions

Classification:decisiontree

Clustering:nearestneighbors

Valueprediction:regression

SLIDE5

What?|WorkingDefinitions

Neuralnetwork(NN)/artificialneuralnetwork(ANN):analgorithmstructurelooselyinspiredbyneuronsinthebrain

Deepneuralnetwork(DNN):aneuralnetworkwithmanylayers—atleastfive,butoftentensorhundreds

Deeplearning(DL):MLsystemsthatuseDNNs

SLIDE6

What?|DeepLearning

Machinelearning:

engineeredfeatures,learnedparameters

Deeplearning:

learnedfeatures,learnedparameters

SLIDE7

What?|GenerativeAdversarialNetworks

Learnshowtocreatenewexampleslikethoseinagivendataset

Competingsubnetworks

Generator(forger)

Discriminator(detective)

SLIDE8

What?|GenerativeAdversarialNetworks

Realvsgenerated

Output

Generator

Random

Discriminator

Example

Dataset

SLIDE9

What?|GenerativeAdversarialNetworks

SLIDE10

Why?|Workingwithmagic

magic

powerwithoutexplanation

^

guaranteed,human-level

SLIDE11

Roadmap

WhatismodernAi?

Whyiscybersohard?

HowcanAihelp?

SLIDE12

Why?|Asymmetric

AnAsymmetricDomain

Favoringtheattacker

Adversarieswillingtotestonlivesystems

Arapidlymovingtarget

InanunknownN-Dimensionalspace

NotpartoftraditionalDevelopmentProcesses

SLIDE13

Why?|Requirements

Aretherequirementssufficientforthemissionneed?

Aretherequirementssufficienttobuildthesystem?

Aretherequirementssufficienttoagainst?

Doesthedesignmeettherequirements?

Whatisthelevelofconfidenceintheresult?

SLIDE14

Why?|Requirements

Whatisthecyberrequirement?

SLIDE15

Why?|Whatwedoinstead

Fightthelastwar

Compromisethenfix

Signaturesbasedblacklists

Compliancebasedengineering

RedTeamAssessment

SLIDE16

Why?|InSearchofSunrise

Quantifiablecybersecurity

DurableandResilienttounknownattacks

Notsubjecttocatastrophiccompromise

Asymmetricinfavorofthedefender/developer

Clearlylocatedinthesystemlifecycle

SLIDE17

Roadmap

WhatismodernAi?

Whyiscybersohard?

HowcanAihelp?

SLIDE18

How?|AiforCyberT&E

Aretheresultsactionable?

Aretheresultsrepeatable?

Dotheresultsprovideadditionalinsights,comparedtotraditionalcyberT&Emethods?

SLIDE19

How?|Automation

MLand“shallow”DLbringmachinespeed

Whatwedotoday,onlyfaster

Signatures,Profiles,Actorsbasedrulesets

Blacklistbased

SLIDE20

How?|AnomalyDetection

“Real”DeepLearning

Whitelistbased

Firstdefinewhatisnormal

Second,identifydeviations

Withouthavingtoexplainwhy

SLIDE21

How?|TestingandEvaluation

Testsystemsfor“zeroday”vulnerabilities

Wedon’tknowabout

Wedon’thavetoenumerate

Provideactionableresultstodevelopers

Andvectorstoouroffensivecybercapabilities

SLIDE22

How?|Vignette

MLautomationofknownattacks

GANstosimulateactivity

UsersandAttackers

RNNtomonitorHealth

Expectedsystemstateprogr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論