




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
ThinkingintheBox
ArtificialIntelligenceforCyberT&E
PresentedbyTurinPollard,EvelynRockwell,andChrisMilroyAlionScienceandTechnology
Roadmap
WhatismodernAi?
Whyiscybersohard?
HowcanAihelp?
SLIDE2
What?|ErasofAi
ArtificialIntelligence
Rules
1950
MachineLearning
Models
1980
DeepLearning
Networks
2010
SLIDE3
What?|WorkingDefinitions
Artificialintelligence(Ai):doingwithcomputerstaskscommonlybelievedtorequireintelligence
Machinelearning(ML):Aisystemsthatprogressivelyimprovetheirperformancewithdata
Training:runningdatathroughanMLsystemuntilitreachesstableandacceptableperformance
SLIDE4
What?|MachineLearning
Coregoal:generalizefromtrainingdatatomissiondata
Distinctfrompureoptimization
Designedtobeexecutedbymachines
Manyfunctions
Classification:decisiontree
Clustering:nearestneighbors
Valueprediction:regression
SLIDE5
What?|WorkingDefinitions
Neuralnetwork(NN)/artificialneuralnetwork(ANN):analgorithmstructurelooselyinspiredbyneuronsinthebrain
Deepneuralnetwork(DNN):aneuralnetworkwithmanylayers—atleastfive,butoftentensorhundreds
Deeplearning(DL):MLsystemsthatuseDNNs
SLIDE6
What?|DeepLearning
Machinelearning:
engineeredfeatures,learnedparameters
Deeplearning:
learnedfeatures,learnedparameters
SLIDE7
What?|GenerativeAdversarialNetworks
Learnshowtocreatenewexampleslikethoseinagivendataset
Competingsubnetworks
Generator(forger)
Discriminator(detective)
SLIDE8
What?|GenerativeAdversarialNetworks
Realvsgenerated
Output
Generator
Random
Discriminator
Example
Dataset
SLIDE9
What?|GenerativeAdversarialNetworks
SLIDE10
Why?|Workingwithmagic
magic
powerwithoutexplanation
^
guaranteed,human-level
SLIDE11
Roadmap
WhatismodernAi?
Whyiscybersohard?
HowcanAihelp?
SLIDE12
Why?|Asymmetric
AnAsymmetricDomain
Favoringtheattacker
Adversarieswillingtotestonlivesystems
Arapidlymovingtarget
InanunknownN-Dimensionalspace
NotpartoftraditionalDevelopmentProcesses
SLIDE13
Why?|Requirements
Aretherequirementssufficientforthemissionneed?
Aretherequirementssufficienttobuildthesystem?
Aretherequirementssufficienttoagainst?
Doesthedesignmeettherequirements?
Whatisthelevelofconfidenceintheresult?
SLIDE14
Why?|Requirements
Whatisthecyberrequirement?
SLIDE15
Why?|Whatwedoinstead
Fightthelastwar
Compromisethenfix
Signaturesbasedblacklists
Compliancebasedengineering
RedTeamAssessment
SLIDE16
Why?|InSearchofSunrise
Quantifiablecybersecurity
DurableandResilienttounknownattacks
Notsubjecttocatastrophiccompromise
Asymmetricinfavorofthedefender/developer
Clearlylocatedinthesystemlifecycle
SLIDE17
Roadmap
WhatismodernAi?
Whyiscybersohard?
HowcanAihelp?
SLIDE18
How?|AiforCyberT&E
Aretheresultsactionable?
Aretheresultsrepeatable?
Dotheresultsprovideadditionalinsights,comparedtotraditionalcyberT&Emethods?
SLIDE19
How?|Automation
MLand“shallow”DLbringmachinespeed
Whatwedotoday,onlyfaster
Signatures,Profiles,Actorsbasedrulesets
Blacklistbased
SLIDE20
How?|AnomalyDetection
“Real”DeepLearning
Whitelistbased
Firstdefinewhatisnormal
Second,identifydeviations
Withouthavingtoexplainwhy
SLIDE21
How?|TestingandEvaluation
Testsystemsfor“zeroday”vulnerabilities
Wedon’tknowabout
Wedon’thavetoenumerate
Provideactionableresultstodevelopers
Andvectorstoouroffensivecybercapabilities
SLIDE22
How?|Vignette
MLautomationofknownattacks
GANstosimulateactivity
UsersandAttackers
RNNtomonitorHealth
Expectedsystemstateprogr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務(wù)中包合同范本
- 課題立項(xiàng)申報(bào)書查重率
- 代理英文合同范本
- 加快老舊農(nóng)機(jī)更新?lián)Q代的實(shí)施方案
- 代寫招標(biāo)文件合同范例
- 合同范本買賣協(xié)議書
- 雙方合作店鋪合同范本
- 咨詢顧問合同范本 英文縮寫
- 保安兼職合同范本
- 倉庫代發(fā)服務(wù)合同范本
- 中國大米等糧食項(xiàng)目投資可行性研究報(bào)告
- 2025語文新教材三下全冊8個(gè)單元教材解讀分析匯編
- java安全編碼規(guī)范
- 美麗的春天課件
- 2025年山東青島自貿(mào)發(fā)展有限公司招聘筆試參考題庫含答案解析
- 液化氣罐的使用和安全防范
- 2025年中考物理總復(fù)習(xí)《內(nèi)能》專項(xiàng)測試卷含有答案
- 會計(jì)法律法規(guī)答題答案
- 2024年無錫工藝職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫含答案解析
- 獸醫(yī)檢驗(yàn)測試題(附參考答案)
- 劇本殺范本完整版
評論
0/150
提交評論