版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PleasereadtheImportantNoticeandWarningsattheendofthisdocument
v1.0
WhitePaper
04-2017
Artificialintelligence:poweringthedeep-learningmachinesoftomorrow
Deeplearningneuralnetworksdemandsophisticatedpowersolutions
Abstract
Onceverymuchasciencefictiondream,artificialintelligence(AI)israpidlybecomingpartofourdailylives.WhileAItakesmanyforms,thesystemsthatmimicthehumanbrain'slearningandproblemsolvingcapabilitycompriseincreasinglycapablecomputerbased“neural”networksconsistingofmanyparalleledprocessorsthatruncomplexlearningandexecutionsoftwarealgorithms.
Whilethealgorithmsarekeytothistechnology,thecomputerpowersystemdemandsarestretchingtheboundariesofexistingpowerdeliverytechnology.Inthiswhitepaper,InfineonwilllookatthepowerdemandsforAIsystems,aswellaspresentingsomeofthelatest,state-of-the-art,powertechnologiesthatareenablingtheadvancesinthisexcitingarena.
By
DannyClavette,Director,SystemsApplicationsInfineonTechnologiesAG
Artificialintelligence:poweringthedeep-learningmachinesoftomorrow
PAGE
10
04-2017
Tableofcontents
Abstract 1
Tableofcontents 2
Overviewofartificialintelligence 3
Challengesforpowerdesigners 4
Digitalvsanalogcontrol 5
RecentpowertechnologyadvancessupportingAI 6
Multi-rail&multiphasedigitalcontrollers 6
IR35411andTDA21470OptiMOS?powerstages 9
Summary 11
Overviewofartificialintelligence
Humansaresmart,achievingintelligencethroughyearsoflearninganddataaccumulationaswellasarguablygetting“wiser”withage.Computerscouldbeconsidered“smart”duetodataretentioncapabilitiesbutuntilrecentlylackedthecapabilitytoautonomouslylearnfromtheselargedatabasesinordertoexecutetasksormakedecisions.Whileahumanbrainconsumes20-30Wofpower,thelatestlearningsystemsareconsumingpoweratlevelsthatwouldsupportasmalltownastheylearntobecome'artificiallyintelligent'.Whilewecandebatewhethercomputingisgetting'smarter'thanhumans,itisimpossibletodebatethattherequirementsforpoweringthisnewgenerationofsupercomputerhavechangeddramatically.
Insomeways,theapproachtakentoAIdeeplearningisquitesimilartohumandevelopmentwherecomputerscontinuetolearnthroughexposure.Intheexamplebelow,aneuralnetworkisfedwiththousandsoftrainingimagesthatareprocessedviamultiplelayersinordertobuildexperienceandknowledge.
Asaresultofthiscomputerintensiveandpowerhungrylearningprocess,thenetworkiseventuallyabletodistinguishasquirrelfromachipmunkorafox.ThegoalistoachieveAIlearningintheshortestamountoftime,thusparallelcomputingpowerismaximizedtolinearlyimprovecomputationtimes.
Thehighpowerconsumptionoftoday'sAIisdrivingchangesinthecomputingarchitecturetoreplicateneuralnetworksthatmimicthehumanbraininanefforttoreducepowerneeds.TraditionalCentralProcessingUnits(CPUs)arearchitectedtobeveryflexibletosupportawidevarietyofgeneral-purposeprogramsandarenotoptimizedforveryspecificandrepetitivetaskssuchasAIlearning.
ManyofthenecessaryfunctionsforAIcanbeperformedbyGraphicsProcessingUnits(GPUs).TheseGPUsaredesignedtorepeatedlyperformcomplexmathematicalfunctionsmoreefficiently,canbeconvenientlyconnectedinparalleltofurtherincreasecomputingpowerandbeopportunisticallyappliedtolearningapplications.Withslightmodifications,theselatestGPUdevicesprocess3xto10xfasterwhileconsumingthesamepowerasaCPU.TheearlyAImarkethasbeendominatedbyNVIDIA;theirDX1GPUsupercomputercontainseightTeslaP100GPUs,eachcapableof21.2TeraFLOPs,andrequires3200Woftotalsystempower.MultipleDX1sconnectedinparallelarerequiredtoformaneffectiveneuralnetwork.
Honingthetechnologyevenfurther,TensorProcessingUnits(TPUs)areASICsthathavebeendevelopedspecificallyformachinelearning.BasedonGPUplatforms,reducedfloating-pointaccuraciesallowmorecomputecapabilityperclockcycle.Rasterizationandtexturemappingfeaturesarealsoremovedtofurtherimprovecomputationefficiency.GooglelaunchedthefirstTPUin2015andIntelisexpectedtolaunchLakeCrestthisyear,targetingDeepNeuralNetwork(DNN).
Tolearn,networksneedtobeabletosense.Local'edgedevices'includesensors,cameras,datacollectorsandlocalactuators.ConnectedtothecentralAIserversviahigh-speedwirelessconnections,theselowpowerdevicesaretheeyes,earsandhandsoftheneuralnetwork.Estimatespredictthattherewillbeover50billionedgedevicesconnectedtothenetworkby2020.
Itshouldcomeasnosurprisethat,despitethepowerchallenges,themarketforAIisgrowingrapidlyasdemonstratedbythe(approximately)40-foldgrowthatGoogleinthepasttwoyears.
Challengesforpowerdesigners
Thepowerlevelsrequiredforthisnewtechnologyaresimplystaggering.Inordertomatchtheprocessingpowerofahumanbrain,asystemwouldneedtoperformmorethan38thousandtrillionoperationspersecond(or38PetaFLOPSaccordingtoDharmendraModha,IBMFellowandChiefScientistattheAlmadenResearchCenter).Foraninterestingcomparison,aserverfarmusingNVIDIA’sDX1’s21.2TeraFLOPsper3200Wadvertisedperformancewouldrequireapproximately1800DX1sconsumingnearly6Megawatts(3200W*38e15/21.2e12).Thehumanbrainontheotherhand,requiresonly20Wofpower.
Thechallengefacingpowerdesignersismulti-faceted.Simplydeliveringtheselevelsofpowerischallengingenough.Efficiencyisabsolutelycritical,notonlyasenergycostsarerising,butalsoaseverywattofwasteenergydissipatedasheatincreasestheairconditioningrequirementsinthedatacenter,furtherincreasingoperationalcostsandcarbonfootprint.
Realestateisalsorisingincostand,asdatacenterscontainhundredsorthousandsofprocessingunits,sizeisimportant.Asmallreductioninthesizeofasingleunitisreplicatedmanytimesover,allowingmoreprocessingpowertobelocatedinthesamespaceaslargersolutions.Yet,thissmallersizerequirementrapidlyincreasespowerdensityandreducesthesurfaceareaavailablefordissipatingheat,makingthermalmanagementoneofthesignificantchallengesindesigningpowerforthisnewgenerationofAIsupercomputers.
Computingsystemsarecomplexloads;whilelearningtheyarerunningatfullpower.Astheactivitydrops,sodoesthepowerrequirement,buttheefficiencyisrequiredtoremainashighaspossiblethroughoutthepowerband.Withtoday'smulti-phasepowersolutionsthisentailsthedesignerbuildinginprovisionforcontrollingthenumberofphasesusedtoensurethatefficiencyisoptimizedatalltimes.
Digitalvsanalogcontrol
Clearly,amoresophisticatedapproachtopowerdesignisgoingtoberequiredtomeettheneedsofthisrapidlygrowingsector.Inordertoaddressthisneed,Infineonhasintroducedadvanceddigitalcontroltechniques,replacingthelegacyanalog-basedsolutions.
Digitalcontrolbringsmanybenefitswhendesigninghigh-endpowersolutions,notleastoverallsystemflexibilityandadaptability.Withdigitaltechnology,controllerscanbecustomizedwithouttheneedforexpensiveandtime-consumingsiliconspins.Thecustomizationextendstodefiningtheconfiguration,telemetryforgatheringsystemperformancedata,settingfaultmanagementandcalibratingthedevice.
Aspowersystemsbecomemoreintegratedintotheoverallsolution,communicationbetweenthepowersolutionandthemainCPU/GPU/TPUisanewrequirement.Infineon’smaturedigitalcontrollertechnologyfacilitatesmarket-leadingsolutionsandincludesaGUIthatenablesreal-timesystemdesign,configuration,validationandmonitoring.
DigitalsolutionssimplifybuildingthescalablepowersolutionsrequiredforAI.Yetwithalloftheincludedfunctionalityandprecisiondeliveryofpower,theyarenowpricecompetitivewiththeanalogsolutionstheyareultimatelyreplacing.
RecentpowertechnologyadvancessupportingAI
Infineonisoneoftheleadingdesignersandmanufacturersofadvancedpowercontrolandswitchingtechnologies.TheirproductofferingishighlyintegratedandprovidesallofthekeysiliconelementsrequiredtobuildhighlyadvancedpowersolutionsforAIapplications.
Infineon'scompleteportfolioincludeshugebreadthofproductsincludingdigitalcontrollers,integratedpowerstages,integratedpowermanagementICs,Point-of-Load(POL)convertersaswellasdiscretesolutionsincludingdriverICs,powerblocksanddiscreteMOSFETs.TherangeisbuiltuponInfineon'slonghistoryofinnovationandcomprisesmultiplemarket-leadingtechnologiessuchasOptiMOS?,DrMOS?andμDrMOS?.
Figure1 Infineonoffersfullflexibilityintermsofspace,performanceandcost
Multi-rail&multiphasedigitalcontrollers
CentraltoInfineon'sofferingforservers(aswellasworkstationsandhigh-enddesktops)isacompletecontrollerproductfamilyofmulti-rail/multiphasedigitalcontrollers.TheseadvancedcontrollersarecomplianttoIntel?,AMD?andsupportPMBUSwithAVS(AdaptiveVoltageScaling)forvoltageset-pointcontrolandsystemtelemetrywithupto50MHzmaxoperation.
Infineonsolutionsareprogrammabletoprovideone,twoorthreefullydigitallycontrolledvoltagerailswithupto10phases.InfineonalsooffersafamilyofdoublingICsandDriverstofurtherincreasephasecount.
Figure2 Infineon’srangeofadvancedcontrollersarecompliantwithIntel?andAMD?standardsandalsosupportPMBUSwithAVS(AdaptiveVoltageScaling)
Efficiencyacrossawideloadrangeissupportedthroughtheabilityofdesignerstoprogramautonomousphaseadditionorshedding.OtherprogrammablefeaturesincludePIDloopcompensation,loadlineslopeandoffsetaswellasdigitaltemperaturecompensation.
Externalloadlinesettingcomponentsareeliminatedbythedigitallyprogrammableloadline.ThecontrollerisdesignedtoworkwithRDS(ON)&DCRcurrentsensepowerstagesandprovidesaccurateinputandoutputcurrentreporting.
Digitalcontrolenablesproprietarynon-linearcontrolalgorithmsandprovidesexcellenttransientresponsewithreducedoutputcapacitance.Mostofourcontrollersalsosupportprogrammablecycle-by-cycleperphasecurrentlimitforsuperiordynamiccurrentlimiting.
ThesedevicesareeasilyconfigurableusingouroptimizedGraphicalUserInterface(GUI)toolswithfinalconfigurationsettingsthatcanbestoredinourdigitalcontroller’son-chipnon-volatilememory.
Aswouldbeexpectedofasophisticatedcontroller,significantfaultdetectionandprotectionisin-builtincludingIUVP,IOVP,CFP,OUVPandOOVP(InputUndervoltageProtection,InputOvervoltageProtection,CatastrophicFaultProtection,OutputUndervoltageProtectionandOutputOvervoltageProtection).Overcurrentprotection(OCP)isprovidedasaninstantaneousvalue,averagedfortotalcurrent,bychannelaswellaspulse-to-pulse.TherearemultipleOverTemperatureProtection(OTP)thresholds(internalandexternal)aswellasopen/shortvoltagesenselinedetectionandnegativecurrentlimitprotection.
InsomeofInfineon'slatestcontrollers,thecombinedstate-machineandintegratedmicrocontrollercorearchitectureallowformaximumflexibilityandtheinternalNon-VolatileMemory(NVM)storestheparametersofanycustomconfigurations.
Figure3 IR35215blockdiagram
IR35411andTDA21470OptiMOS?powerstages
TheIR35411powerstagecontainsalowquiescentcurrentsynchronousbuckgate-driverIC,high-sideandlow-sideMOSFETsandaSchottkydiodeinthesamepackagetofurtherimproveefficiency.ThepackageisoptimizedforPCBlayout,heattransfer,driver/MOSFETcontroltiming,andminimalswitchnoderingingwhenlayoutguidelinesarefollowed.ThepairedgatedriverandMOSFETcombinationenableshigherefficiencyatloweroutputvoltagesrequiredbycuttingedgeCPU,GPUandDDRmemorydesigns.
TheIR35411internalMOSFETcurrentsensealgorithmwithtemperaturecompensationachievessuperiorcurrentsenseaccuracyversusbest-in-classcontrollerbasedinductorDCRsensemethods.Protectionincludescycle-by-cycleOCPwithprogrammablethreshold,VCC/VDRVUVLOprotection,phasefaultdetection,ICtemperaturereportingandthermalshutdown.
Figure4 IR35411blockdiagram
TheIR35411featuresdeep-sleeppowersavingmode,whichgreatlyreducesthepowerconsumptionwhenthemultiphasesystementersPS3/PS4mode.
Operationofupto1.5MHzswitchingfrequencyenableshighperformancetransientresponse,allowingminiaturizationofoutputinductors,aswellasinputandoutputcapacitorswhilemaintainingindustry-leadingefficiency.
WhencombinedwithInfineon’sdigitalcontrollers,theIR35411incorporatestheBody-Braking?featurethroughPWMtri-statethatenablesreductionofoutputcapacitors.ThisquicklydisablesbothMOSFETsinordertoenhancetransientperformanceorprovideahighimpedanceoutput.TheIR35411isoptimizedforCPUcoreandmemorypowerdeliveryinserverapplications.
TheIR35411isanidealcompaniontotheIR35215multi-phasecontroller.
Figure5
belowshowshowtheIR35215combineswithfourIR35411stocreateaVRpowerstageina6+1configuration.
Figure5 VRusingIR35215controllerandIR35411powerstagein6+1configuration
Summary
WhileAIisstillearlyinitsdevelopment,itisalreadybeingrecognizedtobeanimportantandrapidlygrowingapplicationwithexpectedsubstantialimpactsonoursocieties.ThesepioneeringAIalgorithmsareenabledthroughseveralhighperformancecomputersystemsthatarechallengingdesignersonmanyfronts.Thetraditionaldatacenterdesignsarerapidlymigratingfromgeneral-purposeCPU-onlysolutionstowardscombinationsofCPUsandGPUsorTPUs,bringingnewandmorestringentdemandsondesignofserverpowersolutions.
Infineonoffersindustry’shighestefficiencypowerstagesthatutilizeInfineon’smarketleadingOptiMOS?MOSFETtechnology.ThroughcontinuedInfineonadvancementsinitspowersemiconductortechnology,ourdevicesarebecomingincreasinglyefficientresultingincontinuedpowerlossreductionswhileincreasingoursolutiondensities.
Infineondigitalcontrollersbringunprecedentedflexibilityandadaptabilityaswellasprecisecontrol,telemetryandprotectionfeatures.AsaleaderinthisAIpowerdeliverymarket,InfineonoffersabroadrangeofcontrollersandOptiMOS?powerstagesthatcansupportallknownAIhardwareplatformsandtheirdemandingcurrentlevels.Infineonenablesdesignerstocreatestate-of-the-artpowersolutionswithhighestefficiencyandpowerdensityfort
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋拆除施工合同模板
- 上海市家庭居室裝飾裝修施工
- 大邑公司冬季冰雪天氣安全應(yīng)急處置預(yù)案樣本(2篇)
- 體育器材保管員崗位安全工作職責(zé)(2篇)
- 2025年講文明講衛(wèi)生演講稿模版(2篇)
- 儲(chǔ)罐安全操作規(guī)程(2篇)
- 2025年房地產(chǎn)年度工作計(jì)劃(4篇)
- 項(xiàng)目部安全教育制度模版(2篇)
- 化學(xué)化工基礎(chǔ)實(shí)驗(yàn)中心管理規(guī)章制度樣本(3篇)
- 2025年疼痛科質(zhì)量與安全管理制度(2篇)
- 原料藥FDA現(xiàn)場(chǎng)GMP符合性要求與檢查實(shí)踐課件
- 2022閥門(mén)制造作業(yè)指導(dǎo)書(shū)
- 科技創(chuàng)新社團(tuán)活動(dòng)教案課程
- 部編版語(yǔ)文六年級(jí)上冊(cè)作文總復(fù)習(xí)課件
- 氨堿法純堿生產(chǎn)工藝概述
- 基礎(chǔ)化工行業(yè)深度:電解液新型鋰鹽材料之雙氟磺酰亞胺鋰(LiFSI)市場(chǎng)潛力可觀新型鋰鹽LiFSI國(guó)產(chǎn)化進(jìn)程加速
- 年產(chǎn)10000噸一次性自然降解環(huán)保紙漿模塑餐具自動(dòng)化生產(chǎn)線技改項(xiàng)目環(huán)境影響報(bào)告表
- 實(shí)戰(zhàn)銷(xiāo)售培訓(xùn)講座(共98頁(yè)).ppt
- 測(cè)控電路第7章信號(hào)細(xì)分與辨向電路
- 哈爾濱工業(yè)大學(xué)信紙模版
- 氨的飽和蒸汽壓表
評(píng)論
0/150
提交評(píng)論