版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年重慶市一中達標名校中考聯(lián)考數(shù)學(xué)試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(
)A.a(chǎn)
B.b
C. D.2.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分3.tan45o的值為()A. B.1 C. D.4.如圖所示的正方體的展開圖是()A. B. C. D.5.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個6.世界上最小的開花結(jié)果植物是澳大利亞的出水浮萍,這種植物的果實像一個微小的無花果,質(zhì)量只有0.0000000076克,將數(shù)0.0000000076用科學(xué)記數(shù)法表示為()A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×1087.如圖,在正方形OABC中,點A的坐標是(﹣3,1),點B的縱坐標是4,則B,C兩點的坐標分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)8.(2011?雅安)點P關(guān)于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)9.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°10.下列二次根式中,與是同類二次根式的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.12.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A(yù)或B或C).13.不等式5﹣2x<1的解集為_____.14.分解因式:4x2﹣36=___________.15.如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.16.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結(jié)論的序號).三、解答題(共8題,共72分)17.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.18.(8分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.19.(8分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.20.(8分)如圖,矩形中,對角線、交于點,以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積21.(8分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.22.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.23.(12分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.24.為評估九年級學(xué)生的體育成績情況,某校九年級500名學(xué)生全部參加了“中考體育模擬考試”,隨機抽取了部分學(xué)生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數(shù)分布直方圖:成績x分人數(shù)頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學(xué)生的成績;(2)通過計算將頻數(shù)分布直方圖補充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學(xué)生中成績優(yōu)秀的人數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
∵負數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.2、D【解析】
解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.3、B【解析】
解:根據(jù)特殊角的三角函數(shù)值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數(shù)值.4、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)?shù)募糸_,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖.根據(jù)立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據(jù)三個特殊圖案的相對位置關(guān)系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關(guān)鍵點:把展開圖折回立方體再觀察.5、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當(dāng)x=2時,y=4a+2b+c<0,當(dāng)x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.6、A【解析】
絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:將0.0000000076用科學(xué)計數(shù)法表示為.故選A.【點睛】本題考查了用科學(xué)計數(shù)法表示較小的數(shù),一般形式為a×,其中,n為由原數(shù)左邊起第一個不為0的數(shù)字前面的0的個數(shù)所決定.7、A【解析】
作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.8、A【解析】∵關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),∴點P的坐標為(3,﹣4).故選A.9、A【解析】
如圖,過點C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.10、C【解析】
根據(jù)二次根式的性質(zhì)把各個二次根式化簡,根據(jù)同類二次根式的定義判斷即可.【詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的定義,一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式.二、填空題(本大題共6個小題,每小題3分,共18分)11、8【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.12、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率13、x>1.【解析】
根據(jù)不等式的解法解答.【詳解】解:,.故答案為【點睛】此題重點考查學(xué)生對不等式解的理解,掌握不等式的解法是解題的關(guān)鍵.14、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式進行因式分解.詳解:原式=.點睛:本題主要考查的是因式分解,屬于基礎(chǔ)題型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.15、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉(zhuǎn)換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數(shù)y=(x>0)的圖象上,點A,B的橫坐標分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數(shù)的性質(zhì),k的幾何意義.能夠?qū)⑷切蚊娣e進行合理的轉(zhuǎn)換是解題的關(guān)鍵.16、①②③【解析】
依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據(jù)△DFP∽△BPH,可得,再根據(jù)BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據(jù)CP=CD,即可得出PD2=PH?CD;根據(jù)三角形面積計算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設(shè)正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質(zhì)、相似三角形的判定與性質(zhì)、解直角三角形等知識,正確添加輔助線、靈活運用相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.18、(1)不可能;(2).【解析】
(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.19、解:(1)圖見解析;(2)證明見解析.【解析】
(1)根據(jù)角平分線的作法作出∠ABC的平分線即可.(2)首先根據(jù)角平分線的性質(zhì)以及平行線的性質(zhì)得出∠ABE=∠AEB,進而得出△ABO≌△FBO,進而利用AF⊥BE,BO=EO,AO=FO,得出即可.【詳解】解:(1)如圖所示:(2)證明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四邊形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四邊形ABFE為菱形.20、(1)見解析;(2)S四邊形ADOE=.【解析】
(1)根據(jù)矩形的性質(zhì)有OA=OB=OC=OD,根據(jù)四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據(jù)有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據(jù)菱形的性質(zhì)有∠EAB=∠BAO.根據(jù)矩形的性質(zhì)有AB∥CD,根據(jù)平行線的性質(zhì)有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據(jù)面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四邊形ADOE=.【點睛】考查平行四邊形的判定與性質(zhì),矩形的性質(zhì),菱形的判定與性質(zhì),解直角三角形,綜合性比較強.21、(1)證明見解析;(1)32【解析】試題分析:(1)求出∠OED=∠BCA=90°,根據(jù)切線的判定即可得出結(jié)論;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.試題解析:(1)證明:連接OE、EC.∵AC是⊙O的直徑,∴∠AEC=∠BEC=90°.∵D為BC的中點,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切線;(1)由(1)知:∠BEC=90°.在Rt△BEC與Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE?BA.∵AE:EB=1:1,設(shè)AE=x,則BE=1x,BA=3x.∵BC=6,∴61=1x?3x,解得:x=6,即AE=6,∴AB=36,∴AC=A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能物聯(lián)網(wǎng)平臺項目合作民間擔(dān)保借款合同3篇
- 個體糾紛和解合同典范(2024版)版B版
- 二零二五年度大蒜加工企業(yè)原料采購供應(yīng)合同4篇
- 2025年度門頭裝修工程節(jié)能評估與改造合同4篇
- 個人挖掘機買賣合同2024年度3篇
- 攪拌站設(shè)備租賃與購買Option合同(2025版)2篇
- Oracle采購合同Oracle采購合同.(2024版)
- 2025年度窗簾行業(yè)產(chǎn)業(yè)鏈上下游資源整合承包合同4篇
- 二零二五年度智慧醫(yī)療建設(shè)項目承包工程合同標準范本3篇
- 二零二五版龍門吊操作人員培訓(xùn)及考核合同4篇
- 三清三關(guān)消防知識
- 2025年生產(chǎn)主管年度工作計劃
- 2024-2025學(xué)年山東省聊城市高一上學(xué)期期末數(shù)學(xué)教學(xué)質(zhì)量檢測試題(附解析)
- 西方史學(xué)史課件3教學(xué)
- 2024年中國醫(yī)藥研發(fā)藍皮書
- 廣東省佛山市 2023-2024學(xué)年五年級(上)期末數(shù)學(xué)試卷
- 臺兒莊介紹課件
- 人工智能算法與實踐-第16章 LSTM神經(jīng)網(wǎng)絡(luò)
- 17個崗位安全操作規(guī)程手冊
- 2025年山東省濟南市第一中學(xué)高三下學(xué)期期末統(tǒng)一考試物理試題含解析
- 網(wǎng)絡(luò)安全保障服務(wù)方案(網(wǎng)絡(luò)安全運維、重保服務(wù))
評論
0/150
提交評論