版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省湖州市南潯區(qū)重點名校2023-2024學(xué)年中考猜題數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>32.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質(zhì)量約為0.056盎司.將0.056用科學(xué)記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣14.如圖所示是放置在正方形網(wǎng)格中的一個,則的值為()A. B. C. D.5.下列各式屬于最簡二次根式的有()A. B. C. D.6.已知點A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數(shù)y=的圖象上,則y1、y2、y3的大小關(guān)系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y27.某市從今年1月1日起調(diào)整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設(shè)去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.8.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm9.若關(guān)于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<110.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個圖案中的基礎(chǔ)圖形個數(shù)為_______(用含n的式子表示).12.新定義[a,b]為一次函數(shù)(其中a≠0,且a,b為實數(shù))的“關(guān)聯(lián)數(shù)”,若“關(guān)聯(lián)數(shù)”[3,m+2]所對應(yīng)的一次函數(shù)是正比例函數(shù),則關(guān)于x的方程1x-1+113.若圓錐的地面半徑為,側(cè)面積為,則圓錐的母線是__________.14..如圖,圓錐側(cè)面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.15.不等式組的最大整數(shù)解為_____.16.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當(dāng)點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.17.如圖,菱形ABCD的面積為120cm2,正方形AECF的面積為50cm2,則菱形的邊長____cm.三、解答題(共7小題,滿分69分)18.(10分)計算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷219.(5分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設(shè)運動時間為t秒,0<t<1.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點Q關(guān)于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當(dāng)t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.20.(8分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學(xué)去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調(diào)了多少參加歌詠比賽?21.(10分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結(jié)AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應(yīng)用)在探究的條件下,設(shè)PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.22.(10分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.23.(12分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c224.(14分)我們知道中,如果,,那么當(dāng)時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:觀察圖象可知,拋物線y=x2+bx+c與x軸的交點的橫坐標分別為(﹣1,0)、(1,0),所以當(dāng)y<0時,x的取值范圍正好在兩交點之間,即﹣1<x<1.故選B.考點:二次函數(shù)的圖象.1061442、A【解析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關(guān)鍵.3、B【解析】
0.056用科學(xué)記數(shù)法表示為:0.056=,故選B.4、D【解析】
首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據(jù)正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.5、B【解析】
先根據(jù)二次根式的性質(zhì)化簡,再根據(jù)最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關(guān)鍵.6、B【解析】
分別把各點代入反比例函數(shù)的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數(shù)y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,反比例函數(shù)值的大小比較,熟練掌握反比例函數(shù)圖象上的點的坐標滿足函數(shù)的解析式是解題的關(guān)鍵.7、A【解析】解:設(shè)去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.8、D【解析】
解答此題要延長AB、DC相交于F,則BFC構(gòu)成直角三角形,再用勾股定理進行計算.【詳解】延長AB、DC相交于F,則BFC構(gòu)成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【點睛】本題主要考查了勾股定理的應(yīng)用,解答此題要延長AB、DC相交于F,構(gòu)造直角三角形,用勾股定理進行計算.9、C【解析】
將關(guān)于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關(guān)于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關(guān)鍵.10、D【解析】
根據(jù)有兩個角對應(yīng)相等的三角形相似,以及根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應(yīng)相等的三角形相似,兩邊對應(yīng)成比例且夾角相等的兩個三角形相似.二、填空題(共7小題,每小題3分,滿分21分)11、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個考點:規(guī)律型12、53【解析】試題分析:根據(jù)“關(guān)聯(lián)數(shù)”[3,m+2]所對應(yīng)的一次函數(shù)是正比例函數(shù),得到y(tǒng)=3x+m+2為正比例函數(shù),即m+2=0,解得:m=-2,則分式方程為1x-1去分母得:2-(x-1)=2(x-1),去括號得:2-x+1=2x-2,解得:x=53經(jīng)檢驗x=53考點:1.一次函數(shù)的定義;2.解分式方程;3.正比例函數(shù)的定義.13、13【解析】試題解析:圓錐的側(cè)面積=×底面半徑×母線長,把相應(yīng)數(shù)值代入即可求解.設(shè)母線長為R,則:解得:故答案為13.14、4【解析】
先根據(jù)圓錐的側(cè)面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結(jié)論.【詳解】設(shè)圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側(cè)面展開圖,勾股定理,求出OA的長是解本題的關(guān)鍵.15、﹣1.【解析】
分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,從而得出其最大整數(shù)解.【詳解】,解不等式①得:x≤1,解不等式②得x-1>1x,x-1x>1,-x>1,x<-1,∴
不等式組的解集為x<-1,∴
不等式組的最大整數(shù)解為-1.故答案為-1.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關(guān)鍵是熟練的掌握一元一次不等式組的整數(shù)解.16、ya≥1【解析】
設(shè)點A的坐標為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數(shù)的性質(zhì)即可求出答案.【詳解】設(shè)點A的坐標為(m,n),m為全體實數(shù),
由于點A在拋物線y=x1上,
∴n=m1,
由于以A為頂點的拋物線C為y=x1+bx+c,
∴拋物線C為y=(x-m)1+n
化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,
∴令x=1,
∴ya=4-4m+1m1=1(m-1)1+1≥1,
∴ya≥1,
故答案為ya≥1【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)題意求出ya=4-4m+1m1=1(m-1)1+1.17、13【解析】試題解析:因為正方形AECF的面積為50cm2,所以因為菱形ABCD的面積為120cm2,所以所以菱形的邊長故答案為13.三、解答題(共7小題,滿分69分)18、【解析】
按照實數(shù)的運算順序進行運算即可.【詳解】解:原式【點睛】本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及立方根,熟練掌握各個知識點是解題的關(guān)鍵.19、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】
(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關(guān)系式;
(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關(guān)于O的對稱點為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質(zhì),對稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關(guān)鍵是熟練掌握動點運動時所構(gòu)成的三角形各邊的關(guān)系.20、從甲班抽調(diào)了35人,從乙班抽調(diào)了1人【解析】分析:首先設(shè)從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,根據(jù)題意列出一元一次方程,從而得出答案.詳解:設(shè)從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,由題意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,則x﹣1=35﹣1=1.答:從甲班抽調(diào)了35人,從乙班抽調(diào)了1人.點睛:本題主要考查的是一元一次方程的應(yīng)用,屬于基礎(chǔ)題型.理解題目的含義,找出等量關(guān)系是解題的關(guān)鍵.21、【問題】:詳見解析;【探究】:四邊形ABPE是平行四邊形,理由詳見解析;【應(yīng)用】:8.【解析】
(1)先根據(jù)平行線的性質(zhì)和等量代換得出∠1=∠3,再利用中線性質(zhì)得到BD=DC,證明△ABD≌△EDC,從而證明AB=DE(2)方法一:過點D作DN∥PE交直線CF于點N,由平行線性質(zhì)得出四邊形PDNE是平行四邊形,從而得到四邊形ABPE是平行四邊形.方法二:延長BP交直線CF于點N,根據(jù)平行線的性質(zhì)結(jié)合等量代換證明△ABP≌△EPN,從而證明四邊形ABPE是平行四邊形(3)延長BP交CF于H,根據(jù)平行四邊形的性質(zhì)結(jié)合三角形的面積公式求解即可.【詳解】證明:如圖①是的中線,(或證明四邊形ABDE是平行四邊形,從而得到)【探究】四邊形ABPE是平行四邊形.方法一:如圖②,證明:過點D作交直線于點,∴四邊形是平行四邊形,∵由問題結(jié)論可得∴四邊形是平行四邊形.方法二:如圖③,證明:延長BP交直線CF于點N,∵是的中線,∴四邊形是平行四邊形.【應(yīng)用】如圖④,延長BP交CF于H.由上面可知,四邊形是平行四邊形,∴四邊形APHE是平行四邊形,,【點睛】此題重點考查學(xué)生對平行線性質(zhì),平行四邊形性質(zhì)的綜合應(yīng)用能力,熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.22、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 渤海理工職業(yè)學(xué)院《導(dǎo)演基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)幼兒師范高等??茖W(xué)?!镀髽I(yè)策劃》2023-2024學(xué)年第一學(xué)期期末試卷
- 中學(xué)教師聘用合同范本
- 賓館裝修合同范本
- 三亞2025安置房購買合同范例2篇
- 2025年度旅游景區(qū)安全員聘用與管理合同3篇
- 2025版駕校經(jīng)營權(quán)全域拓展服務(wù)合同3篇
- 2025年度海洋工程設(shè)備安裝與檢測合同模板2篇
- 2025年度家具行業(yè)財務(wù)管理合同范本2篇
- 2025年度原料藥環(huán)保合規(guī)審查與咨詢合同3篇
- 江西省景德鎮(zhèn)市2023-2024學(xué)年高二上學(xué)期1月期末質(zhì)量檢測數(shù)學(xué)試題 附答案
- 2024年辦公樓衛(wèi)生管理制度模版(3篇)
- 保險公司2024年工作總結(jié)(34篇)
- 2024年01月22503學(xué)前兒童健康教育活動指導(dǎo)期末試題答案
- 湖北省荊州市八縣市2023-2024學(xué)年高一上學(xué)期1月期末考試 化學(xué) 含解析
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項考試題庫-上(單選題)
- 期末測評(基礎(chǔ)卷二)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- 深圳大學(xué)《數(shù)值計算方法》2021-2022學(xué)年第一學(xué)期期末試卷
- 服裝廠安全培訓(xùn)
- 民法債權(quán)法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年9月時政題庫(附答案)
評論
0/150
提交評論