![2024 全球6G技術(shù)大會(huì) -10.0O White Paper on Orthogonal Time Frequency Space (OTFS) Scheme0409_第1頁](http://file4.renrendoc.com/view4/M00/13/04/wKhkGGYnuR-AMXCWAAGOyzrtIgo973.jpg)
![2024 全球6G技術(shù)大會(huì) -10.0O White Paper on Orthogonal Time Frequency Space (OTFS) Scheme0409_第2頁](http://file4.renrendoc.com/view4/M00/13/04/wKhkGGYnuR-AMXCWAAGOyzrtIgo9732.jpg)
![2024 全球6G技術(shù)大會(huì) -10.0O White Paper on Orthogonal Time Frequency Space (OTFS) Scheme0409_第3頁](http://file4.renrendoc.com/view4/M00/13/04/wKhkGGYnuR-AMXCWAAGOyzrtIgo9733.jpg)
![2024 全球6G技術(shù)大會(huì) -10.0O White Paper on Orthogonal Time Frequency Space (OTFS) Scheme0409_第4頁](http://file4.renrendoc.com/view4/M00/13/04/wKhkGGYnuR-AMXCWAAGOyzrtIgo9734.jpg)
![2024 全球6G技術(shù)大會(huì) -10.0O White Paper on Orthogonal Time Frequency Space (OTFS) Scheme0409_第5頁](http://file4.renrendoc.com/view4/M00/13/04/wKhkGGYnuR-AMXCWAAGOyzrtIgo9735.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1/66
Contents
1.Introduction
2
1.1DocumentStructure
2
1.2KeyApplicationScenarios
3
2.BasicPrinciplesofOTFS
5
2.1PrinciplesofOTFSModulationTransmitter
6
2.2PrinciplesofOTFSModulationReceiver
8
2.3AnalysisofInput-OutputRelationshipinOTFS
1
0
3.AnalysisofDelayDopplerDomainChannelCharacteristics
1
2
3.1CharacteristicsofDelayDopplerDomainChannel
1
2
3.1.1DeterministicDescriptionofChannels
1
2
3.1.2CoherentandStationaryRegionsofChannels
1
4
3.2DelayDopplerDomainChannelCharacteristicsinHigh-SpeedRailwayScenario
1
5
3.2.1ChannelSpreadingFunctionMeasurementSystemBasedonLTE-R
1
5
3.2.2High-SpeedRailwayChannelSpreadingFunctionCharacterizationBasedonLTE-R
1
7
3.3PerformanceEvaluationofOTFSinMeasuredChannels
1
9
4.OTFSChannelEstimationandDataDetection
2
1
4.1PilotDesignforLow-PAPROTFSChannelEstimation
2
1
4.2Off-gridChannelEstimationforOTFS
2
6
4.3Low-ComplexityOTFSDataDetectionSchemeBasedonExpectationPropagation
2
8
5.ExtensionSchemesofOTFS
3
1
5.1Multi-AntennaOTFSScheme
3
1
5.1.1PilotDesignforMIMO-OTFS
3
1
5.1.2Low-ComplexityandLow-OverheadOTFSTransceiverBasedonMulti-AntennaArray
3
6
5.2MultipleAccessTechnologySchemeEmpoweredbyOTFS
4
1
5.2.1OrthogonalTime-FrequencyCodeDomainMultipleAccessScheme
4
1
5.2.2OTFS-SCMASystemBasedonMemoryApproximateMessagePassing(MAMP)
Algorithm
4
5
5.3OTFS-EmpoweredIntegratedSensingandCommunication(OTFS-ISAC)Scheme
5
1
5.3.1AdvantagesofOTFS-ISACScheme
5
1
5.3.2OTFS-ISACWaveformDesign
5
2
6.EvolutionSchemesforOTFS
5
5
6.1NewDelayDopplerDomainMulticarrierModulationScheme
5
5
6.2FusionFrameStructureDesignofOTFSandOFDM
5
7
7.SummaryandOutlook
6
2
References
6
4
ParticipantUnits
6
6
2/66
1.Introduction
Orthogonalfrequencydivisionmultiplexing(OFDM)isawidelyusedmodulationtechniqueinwirelesscommunicationsystemssuchas4G,5G,andWiFi.OFDMbasedoncyclicprefixescaneffectivelydealwithmultipathfadingandonlyrequireslow-complexityfrequencydomainequalizers.Withthedevelopmentofwirelesscommunications,high-speedmobilecommunicationscenariosincomplexscatteringenvironmentsarebecomingincreasinglyabundant,suchasIoV,high-speedrailways,andlow-earthorbitsatellitecommunications.Thesecommunicationscenarioshavealreadyorwillgreatlychangepeople'slifestyles.However,OFDMunderhigh-speedmobilitywilllosesubcarrierorthogonalityduetotheinfluenceofDopplerspread,anditstransmissionreliabilitywilldeteriorate.Therefore,itisimportanttodesignnewmulticarriermodulationschemesforhigh-speedmobile
scenariosinthenextgenerationofmobilecommunicationsystems.
Inrecentyears,researchershaveproposedtheorthogonaltimefrequencyspace(OTFS)multicarriermodulationtechnology.DifferentfromOFDMtechnology,OTFSperformsresourcemappingintheDelayDoppler(DD)domain,andbasedonthesparsityandstabilityoftheDDdomainchannel,itcanachievehigherdatatransmissionreliabilitythanOFDM
underhigh-speedmobileconditions.
Toinvestigatethebasicprinciples,researchandapplicationstatus,andfuturedevelopmentprospectsofOTFS,andtoprovidetechnicalreferencesforindustryandacademia,thiswhitepaperwillintroduceOTFSfromthefollowingsixaspects:(1)BasicprinciplesofOTFS;(2)CharacteristicsofDDdomainchannels;(3)TransmissionwaveformdesignofOTFS;(4)ReceiverschemedesignofOTFS;(5)Multi-antenna,multi-user,andintegratedsensingandcommunicationschemesempoweredbyOTFS;(6)Evolutionschemes
forOTFS.
1.1DocumentStructure
Chapter1istheintroduction,whichintroducesthescopeandstructureofthiswhitepaper,andintroducestheapplicationscenariosofOTFS,pointingouttheneedsandchallengesbroughtbyhigh-speedmobilityinsuchscenarios,thusleadingtothenecessityof
OTFStechnologyresearch.
3/66
Chapter2describesthebasicdesignprinciplesofOTFS,includingtheintroductionoftwoOTFSmodulationimplementationmethods,SFFTandDZT,andabriefdescriptionof
thetransceiverscheme.
Chapter3analyzesthechannelcharacteristicsoftheDelay-Dopplerdomain,andanalyzesthesparsity,compactness,stability,andseparabilityoftheDelay-Dopplerdomain
channelforhigh-speedmobilescenariossuchashigh-speedrailways.
Chapter4introducesthedesignoftheOTFSreceiver,includingthepilotdesignoflow-PAPRchannelestimation,OTFSchannelestimationundernon-integergrids,and
low-complexityOTFSdatadetectionschemebasedonexpectationpropagation.
Chapter5introducesOTFS-empoweredmulti-antenna,multi-user,andintegratedsensingandcommunicationschemes,includingthesystemdesignofMIMO-OTFS,grant-freemultipleaccessschemesforhigh-speedmobilescenariossuchassatellitesandhigh-speedrailwaysformassivemachinetypecommunications,andperformanceanalysisof
integratedsensingandcommunicationsystemdesignbasedonOTFS.
Chapter6introducestheevolutionschemesforOTFS,includingthejointframestructuredesignofOFDMandOTFSthatisforwardcompatiblewithOFDM,andanewtypeof
multicarriermodulationschemeintheDelay-Dopplerdomain.
Chapter7providestheconclusionandoutlook.
1.2KeyApplicationScenarios
High-speedrailwayscenario:Forrailways,continuouslyimprovingtrainspeedsisacommongoalinglobalrailwaydevelopment.Atpresent,theBeijing-Shanghaihigh-speedrailwayhasachievedatestspeedof470kilometersperhour,andtheCR450,a450km/hhigh-speedtrain,willbecompletedin2024.Atthesametime,theCentralJapanRailwayCompanyhasachievedatestspeedof603km/hformaglevtrainsinYamanashi-ken,Japan.Inaddition,thepipelineflyingcar,whichcanreachaspeedofover1,000km/h,isalsounderdevelopment.Basedonthehigh-speeddevelopmentofrailways,countriesworldwidewithdevelopedhigh-speedrailwaysystemsarefocusingontheintelligenceofhigh-speedrailways.
Theintelligencedevelopmentofhigh-speedrailwaysrequiresadvancedcommunication
4/66
systemsandstandardstoprovidesupport,butthehigh-speedmovementoftrainsinhigh-speedrailwayscenarioswillposeagreatchallengetothereliabilityofground-to-train
andtrain-to-traincommunication.
Low-earthorbitsatellitescenario:Low-earthorbit(LEO)satellitecommunicationisatechnologythatusessatellitesinlow-earthorbittoachievecommunication.Unliketraditionalhigh-earthorbitsatellitecommunication,LEOsatellitecommunicationsatellitesaretypicallylocatedbetweenhundredsofkilometersandtwothousandkilometersfromtheground.Comparedwithtraditionalgeosynchronousorbitsatellites,ithastheadvantagesoflowlaunchcost,lowcommunicationdelay,lowtransmissionloss,andseamlessglobalcoverageafternetworking,andhasattractedtheattentionofmanyInternet,communication,andaerospace
companiesaroundtheworld.
Aircoveragescenario:Withtheprogressofaviationcommunication,airplanesaretransformingfromthepast"isolatedislands"ofinformationnetworksintokeycarriersforrealizingglobalinterconnection.Theemergenceofin-flightWi-FiallowspassengerstoaccesstheInternetonairplanes.However,thearrivalofthe5Gerahasbroughtunprecedentedchallengestoaircommunication—thedemandformassivereal-timeInternetdatatransmission.Thischallengerequirescommunicationsystemstobehighlyadaptive,andcapableofimprovingcommunicationqualitybetweenairplanesandgroundstationsorsatellitesinhigh-speedmobileenvironments,ensuringlow-latencyandhigh-reliability
transmissionofinternetdata.
InternetofVehicles:BasedontheOTFS-ISACmechanism,thefollowingInternetofVehiclesfunctionsorapplicationscanbesupported:Accuratelysensingthesurroundingdrivingenvironment,includingvehicles,obstacles,roadconditions,etc.,toenhancedrivingsafetyandachieveintelligentdriving;accuratelysensingthepositionsandmotionstatesofbothreceiversandtransmitters,providingpriorinformationforchannelestimation,beamforming,etc.,toimprovecommunicationperformance;distributednodecollaborativesensing,expandingtherangeofnodesensing,andenhancingtheaccuracyandprecisionof
sensing.
UnderwaterAcousticCommunication:The"SmartOcean"projectisamajorproject
relatedtothenationalstrategyofbuildingamaritimepower,andwiththeadvancementofthe
5/66
maritimepowerandtheconstructionofthe"SmartOcean"project,rapiddevelopmenthasbeenachievedinvariousfieldssuchasmodernfisheries,marineobservationandmonitoring,offshoreoilandgasexplorationanddevelopment,andmarinetransportation.Underwateracousticcommunicationisanimportantpartofthemarinecommunicationnetwork.Acousticwavesarecurrentlytheonlyeffectivelong-distanceinformationtransmissioncarrierunderwater.Theunderwateracoustic(UWA)channelisachannelwithfasttime-varyingcharacteristics,largedelayspread,seriousDopplereffect,andlimitedavailablebandwidth.Incommonmarineenvironments,multipatheffects,Dopplereffects,andenvironmentalnoiseexistduringthepropagationofunderwateracousticsignals,whichmakesitimpossibleforthereceivingendofthecommunicationsystemtoobtaincorrectchannelinformationwhendetectingsignals.Thisbringsgreatobstaclestothedesignofthecommunicationsystem.Atthesametime,thephasefluctuationsinthechannelmakeitverydifficultforthereceivingendtorecoverthecarrierandperformcoherentdemodulation.TheOFDMmodulationtechnologywidelyusedinUWAcommunicationnetworksiseasilyaffectedbyDopplerspread,leadingtoseveredegradationinsystemperformance.HowtoachieveefficientdatatransmissionincomplexandvariablemobileUWAcommunicationscenariosiscurrentlya
keyissuethatneedstobeaddressed.
2.BasicPrinciplesofOTFS
OTFSwasproposedbyR.Hadanietal.in2017[2.1],anditwaspointedoutthatcomparedwithOFDMmodulation,itcouldusethefulldiversitygainofthetime-frequencydomaintoachievebetterdatatransmissionperformanceunderhighmobility[2.2].Accordingtothecontentofthischapter,itcanbefoundthatOTFScanberegardedasaprecodedOFDMsystem,whichhasthepotentialtobecompatiblewithOFDMsystems.However,comparedwiththeOFDMschemethathasbeenmaturelyappliedin5GNR,LTE,Wi-Fi,andotherprotocols,OTFSfacesmanynewchallenges,suchasDDdomainchannelmodeling,reliableDDdomainchannelestimation,low-complexityequalization,multi-antennaOTFSsystemdesign,multi-userOTFSsystemdesign,OTFS-enabledcommunication-sensingsystemdesign,etc.ThissectionwillbrieflyintroducethebasicprinciplesofOTFSmodulation,with
theremainingcontentbeingelaboratedinsubsequentsections.Thissectionmainlyrefersto
6/66
theliterature[2.3].
2.1PrinciplesofOTFSModulationTransmitter
Figure2.1BlockDiagramoftheISFFT-basedOTFSTransmitter
Figure2.1showstheblockdiagramoftheISFFT-basedOTFStransmitter.Considerthe
systembandwidthMΔfandtimedurationNT,whereMisthenumberofsubcarriers,Δfisthesubcarrierspacing,Nisthenumberofslots,andTistheslotduration
.1
Let{XDD[k,l],k=0,…,N-1,l=0,…,M-1}representtheQAMmodulatedsymbol
mappedontheDDgrid,OTFSmodulationfirstusestheInverseSymplecticFiniteFourier
Transform(ISFFT)tomaptheDDdomainsymbolsXDD[k,l]totheTFgridtoobtain
XTF[n,m]:
XTF[n,m]=ΣΣ1XDD[k,l]ej2π-
(2-1)wheren=0,…,N-1,m=0,…,M-1.Thediscreteresourcegridrelationshipbetweenthe
DDdomainandtheTFdomainintheequation(2-1)isshowninFigure2.2.
1NotethatunlikeOFDM,whichonlyconsidersmulticarrierdataforonesymboltimeτ,OTFSconsidersmulticarriernetworkpacketswithaperiodofτ.
7/66
Figure2.2ResourceGridRelationshipbetweenDDDomainandTFDomain
Figure2.3IDZT-basedOTFSTransmitter
Subsequently,thetime-frequencydomainsignalXTF[n,m]isembeddedwithaCPand
transformedintothetimedomainsignals(t)throughwirelesschanneltransmissionusing
theHeisenbergtransformationasfollows:
s(t)=XTF[n,m]gtx(t-nT)ej2πmΔf(t-nT)
(2-2)wheregtx(t)isthetransmitpulseshapingfilter.Basedontheabovecontent,itcanbefound
thattheISFFT-basedOTFSsystemcanbecompatiblewiththeOFDMsystemandthe
correspondingtime-frequencydomainsignalprocessingmethods.Additionally,theOTFS
transmittercanalsobedesignedbasedontheInverseDiscreteZakTransform(IDZT),and
thetransmitterblockdiagramisshowninFigure2.3.
8/66
2.2PrinciplesofOTFSModulationReceiver
Figure2.4OTFSWaveformReceiverBlockDiagram
Figure2.4showstheblockdiagramoftheSFFT-basedOTFSreceiver(Theblock
diagramoftheOTFSreceiverbasedonDZTisanalogoustoFigures2.3and2.4andis
thereforenotelaboratedhere).TheDelay-Dopplerdomainchannelspreadingfunctionis
representedash(τ,v),where‘a(chǎn)ndvrepresentthedelayandDoppler,respectively.Then
thereceivedsignalr(t)canberepresentedas(ignoringnoiseforsimplicity):
r(t)=τ,v)s(t一τ)ej2πv(t一τ)dτdv
Notethatthereareusuallyonlyafewreflectorsinthechannel,so
sparsityandcanberepresentedas2
:
h(τ,v)=
(2-3)
h(τ,v)exhibits
(2-4)
wherePisthenumberofpropagationpaths,hi,τi,andvirepresentthepathgain,delay,
andDopplershiftofthei-thpath,respectively,andδ(.)representstheDiracdeltafunction.
ThedelayandDopplertapsofthei-thpathareexpressedasfollows:
lτikvi+Kvi
τi=MΔf,vi=NT
(2-5)
Sincethedelayresolutionisusuallysmallenough,lτicouldberegardedasaninteger;theDopplerresolutionisusuallylimited,sokviisusedtorepresentitsinteger
partandKvie(一0.5,0.5)isusedtorepresentitsfractionalpart.Atthereceiver,the
time-frequencydomainsignalobtainedthroughtheWignertransformisrepresentedas:
2Channelcharacterizationunderhigh-speedmovementconditionswillbeintroducedindetailinChapter3.
9/66
YTF[n,m]=Y(t,f)t=nT,f=mΔf
(2-6)
wheren=0,…,N一1,m=0,…,M一1,
Y(t,f)=Agrx,r(t,f)蘭∫gx(t,一t)r(t,)e一j2πf(t,一t)dt,
(2-7)
Agrx,r(t,f)representsthetime-frequencydomainsignal(cross-ambiguityfunction)
obtainedbymatchedfiltering.SubstitutingEquations(2-1)to(2-3)intoEquation(2-6)yields
theinput-outputrelationshipofOTFSinthetime-frequencydomainasfollows:
YTF[n,m]=ΣΣHn,m[n,,m,]XTF[n,,m,]
(2-8)
whereHn,m[n,,m,]representstheequivalentchannelconsideringinter-subcarrier
interferenceandinter-symbolinterference(ISI):
Hn,m[n,,m,]=
根ej2π(v+m,Δf)((n一n,)T一τ)ej2πvn,Tdτdv
(2-9)
ItcanbefoundthatHn,m[n,,m,]isaffectedbythetransmittingpulse,channelresponse,andreceivingpulse.Finally,YTF[n,m]isconvertedtotheDDdomainthrough
theSFFToperationtoobtainthereceivedsignalYDD[k,l]:
(nkml)
YDD[k,l]=ΣΣ1YTF[n,m]ej2π|(一N+M)|
(2-10)
Foridealtransmittingandreceivingpulses,thefollowinginput-output
relationshipholds:
YDD[k,l]=Σ
(2-11)
10/66
where
hΦ[.,.]isthesampledversionoftheimpulseresponsefunction:
NTMΔf
hΦ[k-k,,l-l,]=hΦ(v,τ)v=k-k,,τ=l-l,
(2-12)
ForhΦ(v,τ)isthecircularconvolutionofthechannelresponseandthe
windowfunctionSFFTinthetime-frequencydomain:
hΦ(v,τ)=τ,,v,)Φ(v-v,,τ-τ,)e-j2πvτdτ,dv,
Φ[v,τ]=e-j2π(vnT-τmΔf)
2.3AnalysisofInput-OutputRelationshipinOTFS
Accordingtoequation(2-11),itcanbefoundthatthereceivedsignal
(2-13)
(2-14)
YDD[k,l]isa
linearcombinationofalltransmittedsignalsXDD[k,,l,].Consideringthesparsityof
h(τ,v)inequation(2-4),equation(2-13)canbefurtherexpressedas:
hΦ(τ,v)=
=hie-j2πviτiG(v,vi)F(τ,τi)
(2-15)
where
Whenτ=
l-l,
MΔf,
F(τ,τi)Σej2π(τ-τi)m,Δf
(2-16)
G(v,vi)Σej2π(v-vi)n,T
(2-17)
F(τ,τi)willbefurtherexpressedas:
11/66
F,τi=Σejl_l,_lτi)m,=
ej2π(l_l,_lτi)_1
ejl_l,_lτi)_1
Sinceτi=,andlτiisusuallyaninteger,then:
F,τi=〈l__l,_lτiM
where[x]MrepresentsthemodulooperationontheintegerM,thatis
addition,G,vicanbeexpressedas:
(k__k,)e_j2π(k_k,_kvi_Kvi)_1G|(NT,vi)|=e_jk_k,_kvi_Kvi)_1
(2-18)
(2-19)
mod(x,M).In
(2-20)ItcanbefoundthatwhenKvi+0,G,vi+0.Thisphenomenonintroduces
interferenceknownasDopplerInterference.Accordingtoequation(2-20),
()
sinNθ
Nsinθ
G,vi=canbeobtained.Whenθ_k__k,_kvi_Kvi),
(())(())
sinN_1θcosθ+sinθcosN_1θ
Nsinθ
sinNθ
Nsinθ
NN
()=<N_1cosθ+1
(2-21)
WhenNislarge,G,viwilldecreaserapidly,indicatingthatDoppler
interferencemainlycomesfromadjacentDDdomainresourcegrids.Therefore,weconsiderthatDopplerinterferencemainlycomesfromtheneighboringNigridpoints.WhenNi<N,[k__,kvi_Ni]M<k,<[k__kvi+Ni]N,consideringthederivationprocessabove,
YDD[k,l]inequation(2-21)canbesimplifiedas:
12/66
(
)
e-j2π(-q-Kvi)-1
|||
|
|
|
YDD[k,l]~
(Ne-jk-q-Kvi)-N)
hie-j2πviτiXDDk-kvi+qN,l-lτiM
i=1q=-Ni
(2-22)
Equation(2-22)indicatesthatthereceivedsignalYDD[k,l]intheDDdomainis
significantlyaffectedbyinter-symbolinterference,andtheequivalentchannelintheDDdomainisdifficulttobeunitarilydiagonalized.Therefore,comparedtoOFDM,OTFSwillrequirehigherequalizationcomplexity.Additionally,accordingtothereference[2.4],OTFSchannelestimationwillintroducesignificantpilotoverheadandresultinalargerpeak-to-averagepowerratio(PAPR).Ontheotherhand,comparedtoOFDM,OTFSusesfewerCPs(onlyonesegmentperframe),therebyimprovingspectralefficiency.Furthermore,OTFShasstrongerresistancetoDopplerfrequencyoffsetandmultipathinterference.PotentialsolutionstothechallengesinOTFSchannelestimationandequalizationwillbe
providedinChapter4.
3.AnalysisofDelayDopplerDomainChannelCharacteristics
3.1CharacteristicsofDelayDopplerDomainChannel
ThemostsignificantfeaturethatdistinguishesOTFSfromtraditionalmulticarriermodulationschemessuchasOFDMisthatitperformsresourcereuse,channelestimation,anddatadetectionintheDelayDopplerdomain.Therefore,thechannelcharacteristicsintheDelayDopplerdomainplayacrucialroleintheresearchofOTFSschemes.Thissectionwillexplainthedifferentrepresentationforms,physicalconnections,andcharacteristicsoftheDelayDopplerdomainchannel.Themainreferenceforthissectionis[3.1],anditonlyfocusesonthesmall-scalefadingcausedbymultipathpropagationofthechannel,anddoes
notconsiderlarge-scalefadingcharacteristicssuchasshadowfading.
3.1.1DeterministicDescriptionofChannels
IntheTime-delay(TD)domain,wirelesschannelsaretypicallycharacterizedusing
13/66
ChannelImpulseResponse(CIR).DenotingtheCIRash(t,τ),consistingofPtaps
whereeachtapiscomposedofseveralindivisiblemultipaths,h(t,τ)canbeexpressedas
follows:
h(t,τ)=1hi(t)δ(τ一τi),
(3-1)wherehi(t)andτirepresentthetime-varyingchannelfadinganddelayoftheitap,respectively,andi=1,2,…,P,δ(.)representsthedeltafunction.Underhigh-speedmobilityconditions,hi(t)mayvaryovertimeduetofactorssuchasmultipathfading,
Dopplershift,etc.IfconsideringonlytheeffectofDopplershift,hi(t)canbeexpressedas:
hi(t)=hiej2πvit,
(3-2)
wherehiandvirepresentthefadingandDopplershiftofthetap,respectively.Notethateachtapiscomposedofseveralindivisiblemultipaths,andinrichscatteringenvironments,hiistypicallymodeledascomplexGaussianrandomvariableswithamplitudefollowing
Rayleighdistribution.
IntheDelay-Doppler(TD)domain,wirelesschannelscanbecharacterizedasChannel
spreadingfunctions(CSF).DenotingtheCSFash(τ,v),andassumingthatthetime-varyingcharacteristicsofthetapsaresolelycausedbyDopplershift,theCSFcanbe
expressedintermsofCIRasfollows:
h(τ,v)=∫h(t,τ)e一j2πvtdt=1hiδ(τ一τi)δ(v一vi).
(3-3)
wherevirepresentstheDopplershiftofthetap.
IntheTimefrequency(TF)domain,wirelesschannelsarecharacterizedasChannel
TransferFunctions(CTF)h(t,f),assumingthatthetime-varyingcharacteristicsofthetaps
aresolelycausedbyDopplershift.TherelationshipbetweenCTFandCIRisgivenby:
14/66
h(t,f)=∫h(t,τ)e-j2πτfdτ=1hiej2πvite-j2πτif.
(3-4)
ItcanbeseenthattheCIRintheTDdomain,theCSFintheDDdomain,andtheCTFintheTFdomainaremutuallyFouriertransformpairs.Particularly,ifthenumberoftapsPisregardedasthenumberofscatterers,andassumingthatthesystem'sdelayandDopplerresolutionsaresufficientlysmall(networkpacketbandwidthanddurationaresufficientlylarge),thenunderfinitedelayspreadandDopplerspread,theCSFexhibitsclearsparsity,
separability,andcompactnessintheDDdomain.
3.1.2CoherentandStationaryRegionsofChannels
Thetime-varyingnatureofthechannelunderhigh-speedmobilityposeschallengesforaccuratechannelestimation.ForCIRandCTF,thechannelcoherencetimeandcoherencebandwidtharecommonlyusedtoapproximatelyconsiderthechannelasinvariant.TheycanbeapproximatedbytheinverseofthechannelDopplerspreadanddelayspread,respectively.ForDDdomainchannelCSF,thechannelsmoothnesstimeandsmoothnessbandwidthcanbeusedtoapproximatelyconsiderthechannelasstatisticallyinvariant,i.e.,satisfyingthe
Wide-sensestationaryuncorrelatedscattering(WSSUS)assumption:
Eh(τ,v)h*(τ,v)=C(τ,v)δ(τ-τ,)δ(v-v,),
(3-5)
whereC(τ,v)representsthechannelscatteringfunction,whichdenotestheaveragedensity
ofthetwo-dimensionalscatteringfunctionrandomprocess.Accordingtoreference[3.1],the
channel'sstationarytimeandstationarybandwidthareusuallymuchlargerthanthechannel's
coherencetimeandcoherencebandwidth.Therefore,resourcereusebasedonCSF
characteristicscanpotentiallysavetheoverheadofchannelestimationunderhigh-speed
mobilityconditions.
However,itshouldbenotedthatthefadinghiobservedforeachtapatanygivenmomentisarandomvariableratherthanadeterministicconstant,soitcannotbesimply
assumedthathiisconstantwithinthestationarytimeandbandwidthofthechannel,as
15/66
statedin(3-5).Nevertheless,mostcurrentresearchstillassumesthehypothesisthat"hi
remainsconstantwithinthestationarytimeandbandwidthofthechannel."Toinvestigatethe
validityofthishypothesis,weconductedmeasurementsandcharacterizationofCSFin
high-speedrailwayscenarios.
3.2DelayDopplerDomainChannelCharacteristicsinHigh-SpeedRailway
Scenario
Asapreliminarywork,wecharacterizedthechannelspreadingfunctionofHigh-speedrailway(HSR)channelsbasedonchannelmeasurements,andevaluatedtheperformanceof
OTFSinHSR[3.2].
3.2.1ChannelSpreadingFunctionMeasurementSystemBasedonLTE-R
Firstly,wecharacterizedtheChannelspreadingfunction(CSF)oftheHSRchannelbasedonmeasuredchanneldatafromtheLTE-RnetworkontheBeijing-Shenyangline.ThechannelmeasurementscenarioisshowninFigure3.1.SinceitischallengingtotransmitOTFS-modulatedsignalsfromHSRbasestations,h(τ,v)isdifficulttoobtainthrough
directmeasurement.Accordingtotherelationshipbetweenh(τ,v)withCTFdescribedin
3.1,wefirstobtainthechanneltransferfunctionCTFandthentransformitintotheChannelspreadingfunctionCSF.Inthemeasurementsystem,thecarrierfrequencyisfc=465MHz,thesubcarrierspacingisΔf=15kHz,theOFDMsymboltimelengthisT=66.7μs,thenumberofsubcarriersisM=300,andthenumberofOFDMsymbolsNisdeterminedbythemeasurementduration.Thetrainmovesataspeedof371.1km/h.AsshowninFigure3.1,theLTE-RbasestationcontinuouslytransmitsLTEsignalsduringthemeasurement.TwoomnidirectionalantennasareconnectedtotheUniversalsoftwareradioperipheral(USRP)andplacedoutsidetherooftocollectdownlinksignals.Additionally,theUSRPdeviceswere
connectedtotheGlobalPositioningSystem(GPS)torecordthetrain'sspeedandposition.
Figure3.2showstheprocessingflowforobtainingthechannelspreadingfunction.Upon
16/66
receivingthesignal,synchronizationandchannelestimationareperformedfor4datastreams,and1datastreamisrandomlyselectedtocharacterizethechannelspreadingfunction.Specifically,cellsearchandframeoffsetestimationareconductedbasedonthePrimarysynchronizationsignal(PSS)andSecondarysynchronizationsignal(SSS)forframesynchronization.FrequencysynchronizationisachievedbasedontheCyclicPrefix(CP).Inchannelestimation,inter-subcarrierinterferenceandinter-symbolinterference(ISI)aretreatedasnoise.Finally,atwo-dimensionalFouriertransformisappliedtotheobtained
channeltransferfunction(CTF)toderivethemeasuredchannelspreadingfunction(CSF).
Figure3.1:High-speedRailway
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024學(xué)年泰州市靖江八年級(jí)語文第一學(xué)期12月調(diào)研試卷附答案解析
- 2025年農(nóng)業(yè)物資供應(yīng)鏈優(yōu)化管理協(xié)議
- 2025年專業(yè)除鼠服務(wù)合同
- 2025年出租車經(jīng)營權(quán)承接策劃協(xié)議
- 2025年通信傳輸設(shè)備項(xiàng)目規(guī)劃申請報(bào)告模范
- 2025年給皂液機(jī)項(xiàng)目提案報(bào)告模范
- 2025年農(nóng)業(yè)資源共享與協(xié)同發(fā)展協(xié)議
- 2025年建筑工程中介服務(wù)合同模板
- 2025年農(nóng)產(chǎn)品銷售合作協(xié)議合同
- 2025年棉花加工成套設(shè)備項(xiàng)目立項(xiàng)申請報(bào)告模稿
- 供水企業(yè)安全培訓(xùn)班
- 生化檢驗(yàn)報(bào)告單模板
- 面試評(píng)估報(bào)告
- 蘋果樹病蟲害防治
- 2022年山東省青島一中自主招生化學(xué)模擬試卷一(附答案詳解)
- 深圳市非學(xué)科類校外培訓(xùn)機(jī)構(gòu)設(shè)立材料
- 《產(chǎn)品設(shè)計(jì)》(北希望)教學(xué)資料 課程標(biāo)準(zhǔn) 產(chǎn)品設(shè)計(jì)課程標(biāo)準(zhǔn)
- 部編版語文四年級(jí)下冊第7單元核心素養(yǎng)教案
- 雨巷戴望舒說課
- 魯教版六年級(jí)數(shù)學(xué)下冊(五四制)全冊課件【完整版】
- O型圈標(biāo)準(zhǔn)美標(biāo)
評(píng)論
0/150
提交評(píng)論