版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
關(guān)于凸集和凸函數(shù)和凸規(guī)劃凸集---定義線性組合(linearCombination)仿射組合(AffineCombination)凸組合(ConvexCombination)凸錐組合(ConvexConeCombination)第2頁,共50頁,2024年2月25日,星期天凸集---定義例
二維情況下,兩點x1,x2的
(a)線性組合為全平面;
(b)仿射組合為過這兩點的直線;
(c)凸組合為連接這兩點的線段;
(b)凸錐組合為以原點為錐頂并通過這兩點的錐.第3頁,共50頁,2024年2月25日,星期天凸集---定義第4頁,共50頁,2024年2月25日,星期天凸集---定義定義1設(shè)集合若對于任意兩點及實數(shù)都有:則稱集合為凸集.常見的凸集:單點集{x},空集
,整個歐氏空間Rn,超平面:半空間:第5頁,共50頁,2024年2月25日,星期天例:證明超球為凸集.證明:設(shè)為超球中的任意兩點,則有:即點屬于超球,所以超球為凸集.凸集----舉例第6頁,共50頁,2024年2月25日,星期天(1)任意多個凸集的交集為凸集.
(2)設(shè)是凸集,是一實數(shù),則下面的集合是凸集:凸集-----性質(zhì)(3)第7頁,共50頁,2024年2月25日,星期天推論:設(shè)是凸集,則也是凸集,其中是實數(shù).
(4)
S是凸集當且僅當S中任意有限個點的凸組合仍然在S中.P23,定理2.9凸集-----性質(zhì)第8頁,共50頁,2024年2月25日,星期天注:和集和并集有很大的區(qū)別,凸集的并集未必是凸集,而凸集的和集是凸集.例:表示軸上的點.表示軸上的點.則表示兩個軸的所有點,它不是凸集;而凸集.凸集-----性質(zhì)第9頁,共50頁,2024年2月25日,星期天定義設(shè)S
中任意有限個點的所有凸組合所構(gòu)成的集合稱為S的凸包,記為H(S),即凸集-----凸包(ConvexHull)定理2.1.4
H(S)是Rn
中所有包含S的凸集的交集.H(S)是包含S的最小凸集.第10頁,共50頁,2024年2月25日,星期天定義錐、凸錐凸集-----凸錐(ConvexCone)第11頁,共50頁,2024年2月25日,星期天定義分離(Separation)凸集-----凸集分離定理第12頁,共50頁,2024年2月25日,星期天性質(zhì)定理2.1.5凸集-----凸集分離定理(2)是點到集合的最短距離點的充要條件為:注:閉凸集外一點與閉凸集的極小距離,即投影定理。第13頁,共50頁,2024年2月25日,星期天定理2.1.5直觀解釋我們不妨把一個閉凸集想象為一個三維的充滿了氣體的氣球(不一定為標準球形,但必須是凸的),那么,在氣球外一點,到氣球各點(包括內(nèi)部)的距離是不一樣的,但直覺告訴我們,肯定在氣球上有一點,它到該點的距離是所有距離中最小的。這是凸集的特有性質(zhì)。如果不是凸集,就不會這樣了,比如一個平面上對稱心形的圖形(它不是凸的)外一點,至少可以找到2點,使其到外面那一點的距離最小。凸集-----凸集分離定理第14頁,共50頁,2024年2月25日,星期天凸集分離定理定理2.1.6凸集-----凸集分離定理ylS點與閉凸集的分離定理第15頁,共50頁,2024年2月25日,星期天凸集分離定理應(yīng)用---Farkas引理定理2.1.7凸集-----凸集分離定理應(yīng)用Farkas引理在我們即將學習的最優(yōu)性條件中是重要的基礎(chǔ).第16頁,共50頁,2024年2月25日,星期天Farkas引理–幾何解釋
設(shè)A的第i個行向量為ai,i=1,2,…,m,則(2.1.4)式有解當且僅當凸錐{x|Ax≤0}與半空間{x|bTx>0}的交不空.即(2.1.4)式有解當且僅當存在向量x,它與各ai的夾角鈍角或直角,而與b的夾角為銳角.(2.1.5)式有解當且僅當b在由a1,a2,…,am所生成的凸錐內(nèi).a2(2.1.4)有解,(2.1.5)無解a1amb凸集-----凸集分離定理應(yīng)用a1a2amb(2.1.4)無解,(2.1.5)有解第17頁,共50頁,2024年2月25日,星期天凸集分離定理應(yīng)用---Gordan定理定理2.1.8凸集-----凸集分離定理應(yīng)用利用Farkas引理可推導下述的Gordan定理和擇一性定理.凸集分離定理應(yīng)用---擇一性定理定理2.1.9第18頁,共50頁,2024年2月25日,星期天凸函數(shù)凸函數(shù)(ConvexFunction)----定義2.4設(shè)是非空凸集,若對任意的及任意的都有:則稱函數(shù)為上的凸函數(shù).注:將上述定義中的不等式反向,可以得到凹函數(shù)的定義.第19頁,共50頁,2024年2月25日,星期天凸函數(shù)嚴格凸函數(shù)設(shè)是非空凸集,若對任意的及任意的都有:則稱函數(shù)為上的嚴格凸函數(shù).注:將上述定義中的不等式反向,可以得到嚴格凹函數(shù)的定義.第20頁,共50頁,2024年2月25日,星期天凸函數(shù)
對一元函數(shù)在幾何上表示連接的線段.所以一元凸函數(shù)表示連接函數(shù)圖形上任意兩點的線段總是位于曲線弧的上方.幾何性質(zhì)表示在點處的函數(shù)值.
第21頁,共50頁,2024年2月25日,星期天f(X)Xf(X1)f(X2)
X1X2第22頁,共50頁,2024年2月25日,星期天f(X)Xf(X1)f(X2)
X1X2αx1+(1-α)x2f(αx1+(1-α)x2)第23頁,共50頁,2024年2月25日,星期天f(X)Xαf(x1)
+(1-α)f(x2)f(X1)f(X2)
X1X2αx1+(1-α)x2f(αx1+(1-α)x2)第24頁,共50頁,2024年2月25日,星期天f(X)Xf(X1)f(X2)
X1X2任意兩點的函數(shù)值的連線上的點都在曲線的上方αx1+(1-α)x2f(αx1+(1-α)x2)αf(x1)
+(1-α)f(x2)例4.2.1第25頁,共50頁,2024年2月25日,星期天(a)凸函數(shù)(b)凹函數(shù)該定義的一個應(yīng)用——證明不等式例:證明Young不等式推廣:H?lder不等式P412.37證法:在Young不等式中令第26頁,共50頁,2024年2月25日,星期天例:設(shè)試證明在上是嚴格凸函數(shù).證明:設(shè)且都有:因此,在上是嚴格凸函數(shù).凸函數(shù)第27頁,共50頁,2024年2月25日,星期天例:試證線性函數(shù)是上的凸函數(shù).證明:設(shè)則故,是凸函數(shù).類似可以證明也是凹函數(shù).凸函數(shù)第28頁,共50頁,2024年2月25日,星期天凸函數(shù)定理1設(shè)是凸集上的凸函數(shù)充要條件性質(zhì)詹生(Jensen)不等式不等式應(yīng)用:設(shè),證明:P412.36第29頁,共50頁,2024年2月25日,星期天凸函數(shù)定理2性質(zhì)正線性組合第30頁,共50頁,2024年2月25日,星期天凸函數(shù)定理3設(shè)是凸集上的凸函數(shù),則對任意,水平集是凸集.水平集(LevelSet)稱為函數(shù)f在集合S上關(guān)于數(shù)的水平集.注:定理3的逆命題不成立.第31頁,共50頁,2024年2月25日,星期天下面的圖形給出了凸函數(shù)的等值線的圖形,可以看出水平集是凸集.凸函數(shù)第32頁,共50頁,2024年2月25日,星期天凸函數(shù)第33頁,共50頁,2024年2月25日,星期天定理1:設(shè)是定義在凸集上,令則:(1)是定義在凸集是凸集上的凸函數(shù)的充要條件是對任意的一元函數(shù)為上的凸函數(shù).(2)設(shè)若在上為嚴格凸函數(shù),則在上為嚴格凸函數(shù).凸函數(shù)凸函數(shù)的判別定理第34頁,共50頁,2024年2月25日,星期天該定理的幾何意義是:凸函數(shù)上任意兩點之間的部分是一段向下凸的弧.凸函數(shù)第35頁,共50頁,2024年2月25日,星期天定理4設(shè)在凸集上可微,則:在上為凸函數(shù)的充要條件是對任意的都有:嚴格凸函數(shù)(充要條件)??凸函數(shù)凸函數(shù)的判別定理---一階條件注:定理4提供了一個判別可微函數(shù)是否為凸
函數(shù)的依據(jù).第36頁,共50頁,2024年2月25日,星期天凸函數(shù)定理4-----
幾何
解釋一個可微函數(shù)
是凸函數(shù)當且
僅當函數(shù)圖形
上任一點處的
切平面位于曲
面的下方.第37頁,共50頁,2024年2月25日,星期天凸函數(shù)定理4-----
幾何
解釋一個可微函數(shù)
是凸函數(shù)當且
僅當函數(shù)圖形
上任一點處的
切平面位于曲
面的下方.第38頁,共50頁,2024年2月25日,星期天定理5:設(shè)在開凸集內(nèi)二階可微,則是內(nèi)的凸函數(shù)的充要條件為:對任意的Hesse矩陣半正定,其中:凸函數(shù)凸函數(shù)的判別定理---二階條件第39頁,共50頁,2024年2月25日,星期天定理2.3.6:設(shè)在開凸集內(nèi)二階可微,若在內(nèi)正定,則在內(nèi)是嚴格凸函數(shù).注:反之不成立.例:f(x)是嚴格凸的,但在點處不是正定的凸函數(shù)凸函數(shù)的判別定理---二階條件第40頁,共50頁,2024年2月25日,星期天例:凸函數(shù)凸函數(shù)的判別定理---二階條件第41頁,共50頁,2024年2月25日,星期天凸規(guī)劃凸規(guī)劃(ConvexProgramming)設(shè)為凸集,為上的凸函數(shù),則稱規(guī)劃問題為凸規(guī)劃問題.例:為上的凸函數(shù),為無約束凸規(guī)劃問題.例:凸規(guī)劃第42頁,共50頁,2024年2月25日,星期天凸規(guī)劃例:第43頁,共50頁,2024年2月25日,星期天凸規(guī)劃定理2.4(1)凸規(guī)劃問題的任一局部極小點是全局極小點,且全體極小點的集合為凸集.(2)若是凸集上的嚴格凸函數(shù),且凸規(guī)劃問題局部極小點x*存在,則x*是唯一的全局極小點.凸規(guī)劃的基本性質(zhì)第44頁,共50頁,2024年2月25日,星期天定理凸規(guī)劃的任一局部最優(yōu)解都是它的整體最優(yōu)解。證明:設(shè)x*是凸規(guī)劃的一個局部解,則存在δ>0,使如果x*不是整體最優(yōu)解,則又因為f是凸函數(shù),所以取α>0充分小,有第45頁,共50頁,2024年2月25日,星期天例如下非
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國旅居康養(yǎng)行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國長租公寓行業(yè)全國市場開拓戰(zhàn)略制定與實施研究報告
- 2023-2024年企業(yè)主要負責人安全培訓考試題附答案下載
- 2025-2030年中國美容連鎖行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國電力銅母線行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2024年項目安全培訓考試題【模擬題】
- 2025-2030年中國CIS芯片行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 新形勢下住宿行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實施研究報告
- 2023年-2024年員工三級安全培訓考試題帶答案(綜合題)
- 羊躑躅根對血糖調(diào)節(jié)作用研究-洞察分析
- 中國2型糖尿病運動治療指南 (2024版)
- 人教版初中九年級全冊英語單詞表
- 人教版小學二年級數(shù)學下冊數(shù)學口算、脫式、豎式、應(yīng)用題
- DZ∕T 0405-2022 無人機航空磁測數(shù)據(jù)采集技術(shù)要求(正式版)
- 會計業(yè)務(wù)培訓方案(2篇)
- 楚天華通醫(yī)藥設(shè)備有限公司純化水設(shè)備介紹A32017年3月1日
- 投資合作備忘錄標準格式
- 職場吐槽大會活動方案
- 《生物質(zhì)熱電聯(lián)產(chǎn)工程設(shè)計規(guī)范》
- 微波治療技術(shù)的臨床應(yīng)用指南
- 安徽省合肥市廬陽區(qū)部分學校2023-2024學年八年級上學期期末考試英語試題(含答案)
評論
0/150
提交評論