2024屆期海南省??谖逯挟厴I(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁(yè)
2024屆期海南省??谖逯挟厴I(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁(yè)
2024屆期海南省??谖逯挟厴I(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁(yè)
2024屆期海南省海口五中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁(yè)
2024屆期海南省??谖逯挟厴I(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆期海南省??谖逯挟厴I(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,一束平行太陽(yáng)光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°2.下列二次函數(shù)的圖象,不能通過(guò)函數(shù)y=3x2的圖象平移得到的是(

)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x23.如圖所示,若將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1O,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A1點(diǎn)的坐標(biāo)是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)4.如圖,在中,,,,則等于()A. B. C. D.5.已知圖中所有的小正方形都全等,若在右圖中再添加一個(gè)全等的小正方形得到新的圖形,使新圖形是中心對(duì)稱圖形,則正確的添加方案是()A. B. C. D.6.計(jì)算的結(jié)果是()A.1 B.﹣1 C.1﹣x D.7.已知x﹣2y=3,那么代數(shù)式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.98.如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為()A. B. C. D.9.下列實(shí)數(shù)中,在2和3之間的是()A. B. C. D.10.如圖是二次函數(shù)y=ax2+bx+c的圖象,對(duì)于下列說(shuō)法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當(dāng)x>0時(shí),y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤11.二次函數(shù)y=﹣(x﹣1)2+5,當(dāng)m≤x≤n且mn<0時(shí),y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.12.如圖,、是的切線,點(diǎn)在上運(yùn)動(dòng),且不與,重合,是直徑.,當(dāng)時(shí),的度數(shù)是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.分解因式:________.14.若關(guān)于x的一元二次方程x2﹣2x+m=0有實(shí)數(shù)根,則m的取值范圍是.15.今年我市初中畢業(yè)暨升學(xué)統(tǒng)一考試的考生約有35300人,該數(shù)據(jù)用科學(xué)記數(shù)法表示為_(kāi)_______人.16.已知關(guān)于X的一元二次方程有實(shí)數(shù)根,則m的取值范圍是____________________17.分解因式:_____.18.如圖,在平面直角坐標(biāo)系中,⊙P的圓心在x軸上,且經(jīng)過(guò)點(diǎn)A(m,﹣3)和點(diǎn)B(﹣1,n),點(diǎn)C是第一象限圓上的任意一點(diǎn),且∠ACB=45°,則⊙P的圓心的坐標(biāo)是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如下表所示,有A、B兩組數(shù):第1個(gè)數(shù)第2個(gè)數(shù)第3個(gè)數(shù)第4個(gè)數(shù)……第9個(gè)數(shù)……第n個(gè)數(shù)A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個(gè)數(shù)是;用含n的代數(shù)式表示B組第n個(gè)數(shù)是,并簡(jiǎn)述理由;在這兩組數(shù)中,是否存在同一列上的兩個(gè)數(shù)相等,請(qǐng)說(shuō)明.20.(6分)已知AB是⊙O的直徑,弦CD⊥AB于H,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).21.(6分)在平面直角坐標(biāo)系中,拋物線y=(x﹣h)2+k的對(duì)稱軸是直線x=1.若拋物線與x軸交于原點(diǎn),求k的值;當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求k的取值范圍.22.(8分)貨車行駛25與轎車行駛35所用時(shí)間相同.已知轎車每小時(shí)比貨車多行駛20,求貨車行駛的速度.23.(8分)如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知C點(diǎn)周圍200米范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600米到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.(1)MN是否穿過(guò)原始森林保護(hù)區(qū),為什么?(參考數(shù)據(jù):≈1.732)(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?24.(10分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.25.(10分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時(shí),求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點(diǎn)Q在AB上運(yùn)動(dòng)時(shí),⊙O與Rt△ABC的一邊相切,求t的值.26.(12分)如圖,一農(nóng)戶要建一個(gè)矩形豬舍,豬舍的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門,所圍矩形豬舍的長(zhǎng)、寬分別為多少時(shí),豬舍面積為80m2?27.(12分)王老師對(duì)試卷講評(píng)課中九年級(jí)學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,每位學(xué)生最終評(píng)價(jià)結(jié)果為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽(tīng)講、講解題目四項(xiàng)中的一項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:(1)在這次評(píng)價(jià)中,一共抽查了

名學(xué)生;(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在扇形的圓心角度數(shù)為

度;(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;(4)如果全市九年級(jí)學(xué)生有8000名,那么在試卷評(píng)講課中,“獨(dú)立思考”的九年級(jí)學(xué)生約有多少人?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽(yáng)光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點(diǎn)睛】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.2、D【解析】分析:根據(jù)平移變換只改變圖形的位置不改變圖形的形狀與大小對(duì)各選項(xiàng)分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個(gè)單位得到y(tǒng)=3x2+2,故本選項(xiàng)錯(cuò)誤;B、y=3x2的圖象向右平移1個(gè)單位得到y(tǒng)=3(x﹣1)2,故本選項(xiàng)錯(cuò)誤;C、y=3x2的圖象向右平移1個(gè)單位,向上平移2個(gè)單位得到y(tǒng)=3(x﹣1)2+2,故本選項(xiàng)錯(cuò)誤;D、y=3x2的圖象平移不能得到y(tǒng)=2x2,故本選項(xiàng)正確.故選D.3、A【解析】

由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對(duì)稱,根據(jù)圖象確定點(diǎn)A的坐標(biāo),即可求得點(diǎn)A1的坐標(biāo).【詳解】由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對(duì)稱,∵點(diǎn)A的坐標(biāo)是(﹣3,2),∴點(diǎn)A關(guān)于點(diǎn)O的對(duì)稱點(diǎn)A'點(diǎn)的坐標(biāo)是(3,﹣2).故選A.【點(diǎn)睛】本題考查了中心對(duì)稱的性質(zhì)及關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)的特征,熟知中心對(duì)稱的性質(zhì)及關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)的特征是解決問(wèn)題的關(guān)鍵.4、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點(diǎn)睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.5、B【解析】

觀察圖形,利用中心對(duì)稱圖形的性質(zhì)解答即可.【詳解】選項(xiàng)A,新圖形不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B,新圖形是中心對(duì)稱圖形,故此選項(xiàng)正確;選項(xiàng)C,新圖形不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D,新圖形不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的概念,熟知中心對(duì)稱圖形的概念是解決問(wèn)題的關(guān)鍵.6、B【解析】

根據(jù)同分母分式的加減運(yùn)算法則計(jì)算可得.【詳解】解:原式====-1,故選B.【點(diǎn)睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握同分母分式的加減運(yùn)算法則.7、A【解析】

解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.8、B【解析】

過(guò)F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過(guò)F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點(diǎn)睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長(zhǎng)度問(wèn)題一般需用到勾股定理來(lái)解決,常作垂線9、C【解析】

分析:先求出每個(gè)數(shù)的范圍,逐一分析得出選項(xiàng).詳解:A、3<π<4,故本選項(xiàng)不符合題意;

B、1<π?2<2,故本選項(xiàng)不符合題意;

C、2<<3,故本選項(xiàng)符合題意;

D、3<<4,故本選項(xiàng)不符合題意;故選C.點(diǎn)睛:本題考查了估算無(wú)理數(shù)的大小,能估算出每個(gè)數(shù)的范圍是解本題的關(guān)鍵.10、C【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯(cuò)誤;②由于對(duì)稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個(gè)交點(diǎn),∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時(shí),y=a+b+c<0,故④正確;⑤當(dāng)x>時(shí),y隨著x的增大而增大,故⑤錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查二次函數(shù),解題的關(guān)鍵是熟練運(yùn)用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.11、D【解析】

由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負(fù)數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點(diǎn)縱坐標(biāo)取到最大值,結(jié)合圖象最小值只能由x=m時(shí)求出.②頂點(diǎn)縱坐標(biāo)取不到最大值,結(jié)合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當(dāng)m≤0≤x≤n<1時(shí),當(dāng)x=m時(shí)y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=n時(shí)y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當(dāng)m≤0≤x≤1≤n時(shí),當(dāng)x=m時(shí)y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當(dāng)x=1時(shí)y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時(shí)y取最小值,x=1時(shí)y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.12、B【解析】

連接OB,由切線的性質(zhì)可得,由鄰補(bǔ)角相等和四邊形的內(nèi)角和可得,再由圓周角定理求得,然后由平行線的性質(zhì)即可求得.【詳解】解,連結(jié)OB,∵、是的切線,∴,,則,∵四邊形APBO的內(nèi)角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點(diǎn)睛】本題主要考查了切線的性質(zhì)、圓周角定理、平行線的性質(zhì)和四邊形的內(nèi)角和,解題的關(guān)鍵是靈活運(yùn)用有關(guān)定理和性質(zhì)來(lái)分析解答.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、(a+1)(a-1)【解析】

根據(jù)平方差公式分解即可.【詳解】(a+1)(a-1).故答案為:(a+1)(a-1).【點(diǎn)睛】本題考查了因式分解,把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個(gè)因式都不能再分解為止.14、m≤1.【解析】試題分析:由題意知,△=4﹣4m≥0,∴m≤1.故答案為m≤1.考點(diǎn):根的判別式.15、3.53×104【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù),35300=3.53×104,故答案為:3.53×104.16、m≤3且m≠2【解析】試題解析:∵一元二次方程有實(shí)數(shù)根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.17、【解析】分析:要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒(méi)有公因式,若有公因式,則把它提取出來(lái),之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應(yīng)用完全平方公式分解即可:.18、(2,0)【解析】【分析】作輔助線,構(gòu)建三角形全等,先根據(jù)同弧所對(duì)的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結(jié)論.【詳解】連接PB、PA,過(guò)B作BE⊥x軸于E,過(guò)A作AF⊥x軸于F,∵A(m,﹣3)和點(diǎn)B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設(shè)P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點(diǎn)睛】本題考查了圓周角定理和坐標(biāo)與圖形性質(zhì),三角形全等的性質(zhì)和判定,作輔助線構(gòu)建三角形全等是關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)3;(2),理由見(jiàn)解析;理由見(jiàn)解析(3)不存在,理由見(jiàn)解析【解析】

(1)將n=4代入n2-2n-5中即可求解;(2)當(dāng)n=1,2,3,…,9,…,時(shí)對(duì)應(yīng)的數(shù)分別為3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可歸納出第n個(gè)數(shù)是3n-2;(3)“在這兩組數(shù)中,是否存在同一列上的兩個(gè)數(shù)相等”,將問(wèn)題轉(zhuǎn)換為n2-2n-5=3n-2有無(wú)正整數(shù)解的問(wèn)題.【詳解】解:(1))∵A組第n個(gè)數(shù)為n2-2n-5,∴A組第4個(gè)數(shù)是42-2×4-5=3,故答案為3;(2)第n個(gè)數(shù)是.理由如下:∵第1個(gè)數(shù)為1,可寫成3×1-2;第2個(gè)數(shù)為4,可寫成3×2-2;第3個(gè)數(shù)為7,可寫成3×3-2;第4個(gè)數(shù)為10,可寫成3×4-2;……第9個(gè)數(shù)為25,可寫成3×9-2;∴第n個(gè)數(shù)為3n-2;故答案為3n-2;(3)不存在同一位置上存在兩個(gè)數(shù)據(jù)相等;由題意得,,解之得,由于是正整數(shù),所以不存在列上兩個(gè)數(shù)相等.【點(diǎn)睛】本題考查了數(shù)字的變化類,正確的找出規(guī)律是解題的關(guān)鍵.20、(1)證明見(jiàn)解析;(2)△EAD是等腰三角形.證明見(jiàn)解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設(shè)∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結(jié)合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設(shè)AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結(jié)論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結(jié)合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結(jié)合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設(shè)PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長(zhǎng).試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設(shè)∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設(shè)AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=,設(shè)PN=12b,則AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN===.21、(1)k=﹣1;(2)當(dāng)﹣4<k<﹣1時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn).【解析】

(1)由拋物線的對(duì)稱軸直線可得h,然后再由拋物線交于原點(diǎn)代入求出k即可;(2)先根據(jù)拋物線與x軸有公共點(diǎn)求出k的取值范圍,然后再根據(jù)拋物線的對(duì)稱軸及當(dāng)﹣1<x<2時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),進(jìn)一步求出k的取值范圍即可.【詳解】解:(1)∵拋物線y=(x﹣h)2+k的對(duì)稱軸是直線x=1,∴h=1,把原點(diǎn)坐標(biāo)代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點(diǎn),∴對(duì)于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當(dāng)x=﹣1時(shí),y=4+k;當(dāng)x=2時(shí),y=1+k,∵拋物線的對(duì)稱軸為x=1,且當(dāng)﹣1<x<2時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當(dāng)﹣4<k<﹣1時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn).【點(diǎn)睛】拋物線與一元二次方程的綜合是本題的考點(diǎn),熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.22、50千米/小時(shí).【解析】

根據(jù)題中等量關(guān)系:貨車行駛25千米與小車行駛35千米所用時(shí)間相同,列出方程求解即可.【詳解】解:設(shè)貨車的速度為x千米/小時(shí),依題意得:解:根據(jù)題意,得

解得:x=50經(jīng)檢驗(yàn)x=50是原方程的解.答:貨車的速度為50千米/小時(shí).【點(diǎn)睛】本題考查了分式方程的應(yīng)用,找出題中的等量關(guān)系,列出關(guān)系式是解題的關(guān)鍵.23、(1)不會(huì)穿過(guò)森林保護(hù)區(qū).理由見(jiàn)解析;(2)原計(jì)劃完成這項(xiàng)工程需要25天.【解析】試題分析:(1)要求MN是否穿過(guò)原始森林保護(hù)區(qū),也就是求C到MN的距離.要構(gòu)造直角三角形,再解直角三角形;(2)根據(jù)題意列方程求解.試題解析:(1)如圖,過(guò)C作CH⊥AB于H,設(shè)CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會(huì)穿過(guò)森林保護(hù)區(qū).(2)設(shè)原計(jì)劃完成這項(xiàng)工程需要y天,則實(shí)際完成工程需要y-5根據(jù)題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計(jì)劃完成這項(xiàng)工程需要25天.24、(1)見(jiàn)解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.25、(1);(2)①;②;(3)t的值為或1或.【解析】

(1)先根據(jù)t的值計(jì)算CQ和CP的長(zhǎng),由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動(dòng)時(shí),②當(dāng)Q在邊AB上運(yùn)動(dòng)時(shí);分別根據(jù)勾股定理計(jì)算PQ2,最后利用圓的面積公式可得S與t的關(guān)系式;(3)分別當(dāng)⊙O與BC相切時(shí)、當(dāng)⊙O與AB相切時(shí),當(dāng)⊙O與AC相切時(shí)三種情況分類討論即可確定答案.【詳解】(1)當(dāng)t=時(shí),CQ=4t=4×=2,即此時(shí)Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動(dòng)時(shí),0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當(dāng)Q在邊AB上運(yùn)動(dòng)時(shí),2<t<4如圖2,設(shè)⊙O與AB的另一個(gè)交點(diǎn)為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論