楚雄市重點中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
楚雄市重點中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
楚雄市重點中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
楚雄市重點中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
楚雄市重點中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

楚雄市重點中學(xué)2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.12.已知為銳角,且,則等于()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.4.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.5.在中,為中點,且,若,則()A. B. C. D.6.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.7.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.8.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.9.已知復(fù)數(shù),則()A. B. C. D.10.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.311.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.12.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)命題:,,則:__________.14.下圖是一個算法流程圖,則輸出的的值為__________.15.能說明“在數(shù)列中,若對于任意的,,則為遞增數(shù)列”為假命題的一個等差數(shù)列是______.(寫出數(shù)列的通項公式)16.已知,,分別為內(nèi)角,,的對邊,,,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護小島,段設(shè)計成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?18.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.19.(12分)已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點P的坐標(biāo)為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.20.(12分)已知的圖象在處的切線方程為.(1)求常數(shù)的值;(2)若方程在區(qū)間上有兩個不同的實根,求實數(shù)的值.21.(12分)已知等差數(shù)列的公差,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)已知拋物線:()上橫坐標(biāo)為3的點與拋物線焦點的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動點,過P作圓的兩條切線分別與y軸交于A、B兩點.求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意得到關(guān)于的等式,結(jié)合對數(shù)的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運算.2、C【解析】

由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎(chǔ)題.3、B【解析】

模擬程序框圖運行分析即得解.【詳解】;;.所以①處應(yīng)填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.4、D【解析】

先判斷函數(shù)在時的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調(diào)性,比較出三個數(shù)的大小.【詳解】當(dāng)時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.5、B【解析】

選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.6、B【解析】

由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.7、B【解析】

分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關(guān)的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.8、B【解析】

先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,難度較易.9、B【解析】

利用復(fù)數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復(fù)數(shù)的除法運算、加法運算,考查復(fù)數(shù)的模,屬于基礎(chǔ)題.10、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。11、D【解析】

根據(jù)點差法得,再根據(jù)焦點坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.12、B【解析】

作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.【點睛】本題考查集合的交集運算,關(guān)鍵在于作出集合所表示的點的圖象,再運用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】

存在符號改任意符號,結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.14、3【解析】

分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應(yīng)用問題,解題的關(guān)鍵是對算法語句的理解,屬基礎(chǔ)題.15、答案不唯一,如【解析】

根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個遞減的數(shù)列,還需檢驗是否滿足命題中的條件,屬基礎(chǔ)題.16、【解析】

根據(jù)題意,利用余弦定理求得,再運用三角形的面積公式即可求得結(jié)果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應(yīng)用和三角形的面積公式,考查計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),定義域是.(2)百萬【解析】

(1)以為原點,直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點,直線為軸建立如圖所示的直角坐標(biāo)系.設(shè),則,,.因為,所以直線的方程為,即,因為圓與相切,所以,即,從而得,在直線的方程中,令,得,所以,所以當(dāng)時,,設(shè)銳角滿足,則,所以關(guān)于的函數(shù)是,定義域是.(2)要使建造此通道費用最少,只要通道的長度即最?。?,得,設(shè)銳角,滿足,得.列表:0減極小值增所以時,,所以建造此通道的最少費用至少為百萬元.【點睛】本題考查三角函數(shù)模型的實際應(yīng)用、利用導(dǎo)數(shù)求函數(shù)的最小值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結(jié)合正弦定理先進行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.19、(1),拋物線;(2)存在,.【解析】

(1)設(shè),易得,化簡即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準(zhǔn)線的拋物線.(2)不妨設(shè).因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問題,考查學(xué)生的計算能力,是一道中檔題.20、(1);(2)或.【解析】

(1)求出,由,建立方程求解,即可求出結(jié)論;(2)根據(jù)函數(shù)的單調(diào)區(qū)間,極值,做出函數(shù)在的圖象,即可求解.【詳解】(1),由題意知,解得(舍去)或.(2)當(dāng)時,故方程有根,根為或,+0-0+極大值極小值由表可見,當(dāng)時,有極小值0.由上表可知的減函數(shù)區(qū)間為,遞增區(qū)間為,.因為,.由數(shù)形結(jié)合可得或.【點睛】本題考查導(dǎo)數(shù)的幾何意義,應(yīng)用函數(shù)的圖象是解題的關(guān)鍵,意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.21、(1);(2).【解析】

(1)根據(jù)等比中項性質(zhì)可構(gòu)造方程求得,由等差數(shù)列通項公式可求得結(jié)果;(2)由(1)可得,可知為等比數(shù)列,利用分組求和法,結(jié)合等差和等比數(shù)列求和公式可求得結(jié)果.【詳解】(1)成等比數(shù)列,,即,,解得:,.(2)由(1)得:,,,數(shù)列是首項為,公比為的等比數(shù)列,.【點睛】本題考查等差數(shù)列通項公式的求解、分組求和法求解數(shù)列的前項和的問題;關(guān)鍵是能夠根據(jù)通項公式證得數(shù)列為等比數(shù)列,進而采用分組求和法,結(jié)合

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論