廣東省韶關(guān)市六校2024年高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第1頁
廣東省韶關(guān)市六校2024年高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第2頁
廣東省韶關(guān)市六校2024年高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁
廣東省韶關(guān)市六校2024年高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第4頁
廣東省韶關(guān)市六校2024年高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣東省韶關(guān)市六校2024年高三下學(xué)期一模考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平面直角坐標(biāo)系中,已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,終邊落在直線上,則()A. B. C. D.2.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.3.定義在上函數(shù)滿足,且對任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.4.已知函數(shù),則方程的實(shí)數(shù)根的個數(shù)是()A. B. C. D.5.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.156.已知雙曲線的中心在原點(diǎn)且一個焦點(diǎn)為,直線與其相交于,兩點(diǎn),若中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是A. B.C. D.7.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對稱;②函數(shù)是周期函數(shù);③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④8.若復(fù)數(shù)z滿足,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.10.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.11.將函數(shù)向左平移個單位,得到的圖象,則滿足()A.圖象關(guān)于點(diǎn)對稱,在區(qū)間上為增函數(shù)B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對稱C.圖象關(guān)于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根12.已知,函數(shù),若函數(shù)恰有三個零點(diǎn),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法的流程圖,則輸出的x的值為_______.14.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.15.拋物線上到其焦點(diǎn)的距離為的點(diǎn)的個數(shù)為________.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點(diǎn)T為圓心作圓,設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:為定值.18.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率是,動點(diǎn)在橢圓上運(yùn)動,當(dāng)軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(diǎn)(不重合).設(shè),求的最小值.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到距離的取值范圍.20.(12分)已知函數(shù).當(dāng)時,求不等式的解集;,,求a的取值范圍.21.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論零點(diǎn)的個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

利用誘導(dǎo)公式以及二倍角公式,將化簡為關(guān)于的形式,結(jié)合終邊所在的直線可知的值,從而可求的值.【詳解】因?yàn)?,且,所?故選:C.【點(diǎn)睛】本題考查三角函數(shù)中的誘導(dǎo)公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結(jié)果;(2)將變形為,利用的值求出結(jié)果.2、A【解析】

設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時,可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.3、B【解析】

結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點(diǎn)睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.4、D【解析】

畫出函數(shù),將方程看作交點(diǎn)個數(shù),運(yùn)用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實(shí)數(shù)根的個數(shù)是3+2=5個故選:D【點(diǎn)睛】本題綜合考查了函數(shù)的圖象的運(yùn)用,分類思想的運(yùn)用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大,屬于中檔題.5、C【解析】

寫出展開式的通項(xiàng)公式,令,即,則可求系數(shù).【詳解】的展開式的通項(xiàng)公式為,令,即時,系數(shù)為.故選C【點(diǎn)睛】本題考查二項(xiàng)式展開的通項(xiàng)公式,屬基礎(chǔ)題.6、D【解析】

根據(jù)點(diǎn)差法得,再根據(jù)焦點(diǎn)坐標(biāo)得,解方程組得,,即得結(jié)果.【詳解】設(shè)雙曲線的方程為,由題意可得,設(shè),,則的中點(diǎn)為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點(diǎn)睛】本題主要考查利用點(diǎn)差法求雙曲線標(biāo)準(zhǔn)方程,考查基本求解能力,屬于中檔題.7、A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯誤;函數(shù)定義域?yàn)?,最值點(diǎn)即為極值點(diǎn),由知③錯誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)椋?,為奇函?shù),圖象關(guān)于原點(diǎn)對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當(dāng)時,,,,此時與無交點(diǎn);當(dāng)時,,,,此時與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.8、A【解析】

化簡復(fù)數(shù),求得,得到復(fù)數(shù)在復(fù)平面對應(yīng)點(diǎn)的坐標(biāo),即可求解.【詳解】由題意,復(fù)數(shù)z滿足,可得,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點(diǎn)的坐標(biāo)為位于第一象限故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)的幾何表示方法,其中解答中熟記復(fù)數(shù)的運(yùn)算法則,結(jié)合復(fù)數(shù)的表示方法求解是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】

由模長公式求解即可.【詳解】,當(dāng)時取等號,所以本題答案為B.【點(diǎn)睛】本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.10、D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故對三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.11、C【解析】

由輔助角公式化簡三角函數(shù)式,結(jié)合三角函數(shù)圖象平移變換即可求得的解析式,結(jié)合正弦函數(shù)的圖象與性質(zhì)即可判斷各選項(xiàng).【詳解】函數(shù),則,將向左平移個單位,可得,由正弦函數(shù)的性質(zhì)可知,的對稱中心滿足,解得,所以A、B選項(xiàng)中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關(guān)于直線對稱;當(dāng)時,,由正弦函數(shù)性質(zhì)可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當(dāng),,由正弦函數(shù)的圖象與性質(zhì)可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.【點(diǎn)睛】本題考查了三角函數(shù)式的化簡,三角函數(shù)圖象平移變換,正弦函數(shù)圖象與性質(zhì)的綜合應(yīng)用,屬于中檔題.12、C【解析】

當(dāng)時,最多一個零點(diǎn);當(dāng)時,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時,,得;最多一個零點(diǎn);當(dāng)時,,,當(dāng),即時,,在,上遞增,最多一個零點(diǎn).不合題意;當(dāng),即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點(diǎn);根據(jù)題意函數(shù)恰有3個零點(diǎn)函數(shù)在上有一個零點(diǎn),在,上有2個零點(diǎn),如圖:且,解得,,.故選.【點(diǎn)睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用流程圖,逐次進(jìn)行運(yùn)算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點(diǎn)睛】本題主要考查程序框圖的識別,“還原現(xiàn)場”是求解這類問題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).14、【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內(nèi)部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點(diǎn)睛】本題考查排列的應(yīng)用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.15、【解析】

設(shè)拋物線上任意一點(diǎn)的坐標(biāo)為,根據(jù)拋物線的定義求得,并求出對應(yīng)的,即可得出結(jié)果.【詳解】設(shè)拋物線上任意一點(diǎn)的坐標(biāo)為,拋物線的準(zhǔn)線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點(diǎn)的距離為的點(diǎn)的個數(shù)為.故答案為:.【點(diǎn)睛】本題考查利用拋物線的定義求點(diǎn)的坐標(biāo),考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

計(jì)算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】

(1)依題意,得,,由此能求出橢圓C的方程.(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,設(shè),,設(shè),由于點(diǎn)在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,設(shè),,設(shè),由于點(diǎn)在橢圓C上,所以,由,則,.由于,故當(dāng)時,的最小值為,所以,故,又點(diǎn)在圓T上,代入圓的方程得到.故圓T的方程為:(3)設(shè),則直線MP的方程為:,令,得,同理:.故又點(diǎn)與點(diǎn)在橢圓上,故,代入上式得:,所以【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、圓的軌跡方程、直線與橢圓的位置關(guān)系中定值問題,考查了學(xué)生的計(jì)算能力,屬于中檔題.18、(1);(2)【解析】

(1)根據(jù)題意直接計(jì)算得到,,得到橢圓方程.(2)不妨設(shè),且,設(shè),代入數(shù)據(jù)化簡得到,故,得到答案.【詳解】(1),所以,,化簡得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設(shè),且,設(shè),所以由,得,所以,由,得,代入,化簡得:,由于,所以,同理可得,所以,所以當(dāng)時,最小為【點(diǎn)睛】本題考查了橢圓方程,橢圓中的向量運(yùn)算和最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19、(1),.(2)【解析】

(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,即可求得答案;(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為,根據(jù)點(diǎn)到直線距離公式,即可求得答案.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),消去參數(shù)的普通方程為.曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:的直角坐標(biāo)方程為.(2)的標(biāo)準(zhǔn)方程為,圓心為,半徑為圓心到的距離為,點(diǎn)到的距離的取值范圍是.【點(diǎn)睛】本題解題關(guān)鍵是掌握極坐標(biāo)化直角坐標(biāo)的公式和點(diǎn)到直線距離公式,考查了分析能力和計(jì)算能力,屬于中檔題.20、(1);(2).【解析】

(1)當(dāng)時,,①當(dāng)時,,令,即,解得,②當(dāng)時,,顯然成立,所以,③當(dāng)時,,令,即,解得,綜上所述,不等式的解集為.(2)因?yàn)?,因?yàn)?,有成立,所以只需,解得,所以a的取值范圍為.【點(diǎn)睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.21、(1)答案不唯一,具體見解析(2)【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論