版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省紅河市2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.2.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.關(guān)于函數(shù),下列說法正確的是()A.函數(shù)的定義域?yàn)锽.函數(shù)一個(gè)遞增區(qū)間為C.函數(shù)的圖像關(guān)于直線對(duì)稱D.將函數(shù)圖像向左平移個(gè)單位可得函數(shù)的圖像4.關(guān)于函數(shù),有下述三個(gè)結(jié)論:①函數(shù)的一個(gè)周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域?yàn)?其中所有正確結(jié)論的編號(hào)是()A.①② B.② C.②③ D.③5.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱中心為()A. B. C. D.6.某幾何體的三視圖如圖所示,其中正視圖是邊長(zhǎng)為4的正三角形,俯視圖是由邊長(zhǎng)為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.7.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.8.已知四棱錐中,平面,底面是邊長(zhǎng)為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.9.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.10.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.11.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.1012.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.14.如圖,在矩形中,,是的中點(diǎn),將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.15.三個(gè)小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),則三人都收到禮物的概率為______.16.設(shè)函數(shù),若對(duì)于任意的,∈[2,,≠,不等式恒成立,則實(shí)數(shù)a的取值范圍是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:,點(diǎn)為拋物線的焦點(diǎn),焦點(diǎn)到直線的距離為,焦點(diǎn)到拋物線的準(zhǔn)線的距離為,且.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若軸上存在點(diǎn),過點(diǎn)的直線與拋物線相交于、兩點(diǎn),且為定值,求點(diǎn)的坐標(biāo).18.(12分)已知集合,.(1)若,則;(2)若,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓的短軸的兩個(gè)端點(diǎn)分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個(gè)不同的交點(diǎn)、,設(shè)為直線上一點(diǎn),且直線、的斜率的積為.證明:點(diǎn)在軸上.20.(12分)在四棱錐的底面中,,,平面,是的中點(diǎn),且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點(diǎn),使得,若存在指出點(diǎn)的位置,若不存在請(qǐng)說明理由.21.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對(duì)于任意的滿足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對(duì)于任意的正數(shù)n,總有.22.(10分)我們稱n()元有序?qū)崝?shù)組(,,…,)為n維向量,為該向量的范數(shù).已知n維向量,其中,,2,…,n.記范數(shù)為奇數(shù)的n維向量的個(gè)數(shù)為,這個(gè)向量的范數(shù)之和為.(1)求和的值;(2)當(dāng)n為偶數(shù)時(shí),求,(用n表示).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.2、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.3、B【解析】
化簡(jiǎn)到,根據(jù)定義域排除,計(jì)算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域?yàn)?,故錯(cuò)誤;當(dāng)時(shí),,函數(shù)單調(diào)遞增,故正確;當(dāng),關(guān)于的對(duì)稱的直線為不在定義域內(nèi),故錯(cuò)誤.平移得到的函數(shù)定義域?yàn)?,故不可能為,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對(duì)稱,三角函數(shù)平移,意在考查學(xué)生的綜合應(yīng)用能力.4、C【解析】
①用周期函數(shù)的定義驗(yàn)證.②當(dāng)時(shí),,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價(jià)于函數(shù)的值域,而,當(dāng)時(shí),再求值域.【詳解】因?yàn)?,故①錯(cuò)誤;當(dāng)時(shí),,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價(jià)于函數(shù)的值域,易知,故當(dāng)時(shí),,故③正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.5、D【解析】
試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).6、A【解析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長(zhǎng)為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.7、C【解析】
將函數(shù)解析式化簡(jiǎn),并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.8、B【解析】
由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長(zhǎng)為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.9、D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.10、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.11、C【解析】
根據(jù)直線過定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱性,可得結(jié)果.【詳解】由題可知:直線過定點(diǎn)且在是關(guān)于對(duì)稱如圖通過圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.12、B【解析】
利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對(duì)稱,結(jié)合函數(shù)的對(duì)稱性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對(duì)稱,,函數(shù)關(guān)于點(diǎn)對(duì)稱,所以兩個(gè)函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對(duì)稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對(duì)稱,.故答案為:18【點(diǎn)睛】本題考查了函數(shù)對(duì)稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對(duì)稱性是解決本題的關(guān)鍵,屬于中檔題.14、【解析】
根據(jù)題意,畫出空間幾何體,設(shè)的中點(diǎn)分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點(diǎn)分別為,連接,則,.因?yàn)槠矫嫫矫?,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點(diǎn)睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.15、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).由此能求出三人都收到禮物的概率.【詳解】三個(gè)小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個(gè)人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個(gè)數(shù).則三人都收到禮物的概率.故答案為:.【點(diǎn)睛】本題考查古典概型概率的求法,考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當(dāng)時(shí)在[2,上單調(diào)遞增;當(dāng)時(shí)在上單調(diào)遞增;在上單調(diào)遞減,因此實(shí)數(shù)a的取值范圍是考點(diǎn):函數(shù)單調(diào)性三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先分別表示出,然后根據(jù)求解出的值,則的標(biāo)準(zhǔn)方程可求;(2)設(shè)出直線的方程并聯(lián)立拋物線方程得到韋達(dá)定理形式,然后根據(jù)距離公式表示出并代入韋達(dá)定理形式,由此判斷出為定值時(shí)的坐標(biāo).【詳解】(1)由題意可得,焦點(diǎn),,則,,∴解得.拋物線的標(biāo)準(zhǔn)方程為(2)設(shè),設(shè)點(diǎn),,顯然直線的斜率不為0.設(shè)直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時(shí),點(diǎn)的坐標(biāo)為【點(diǎn)睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對(duì)應(yīng)的定值問題,聯(lián)立直線方程借助韋達(dá)定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設(shè)法有時(shí)能很大程度上起到簡(jiǎn)化運(yùn)算的作用。18、(1);(2)【解析】
(1)將代入可得集合B,解對(duì)數(shù)不等式可得集合A,由并集運(yùn)算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時(shí),由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因?yàn)?,故;若,即時(shí),,符合題意;若,即時(shí),,解得;綜上所述,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了集合的并集運(yùn)算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.19、(1);(2)見解析.【解析】
(1)由已知條件得出、的值,進(jìn)而可得出的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn),可得,且,,求出直線的斜率,進(jìn)而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點(diǎn)的坐標(biāo),即可證得結(jié)論.【詳解】(1)由題設(shè),得,所以,即.故橢圓的方程為;(2)設(shè),則,,.所以直線的斜率為,因?yàn)橹本€、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點(diǎn)的縱坐標(biāo)為.因?yàn)辄c(diǎn)在橢圓上,所以,則,所以點(diǎn)在軸上.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了點(diǎn)在定直線的證明,考查計(jì)算能力與推理能力,屬于中等題.20、(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點(diǎn)為線段的中點(diǎn).【解析】
(Ⅰ)連結(jié),,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標(biāo)系,平面法向量為,平面的法向量,計(jì)算夾角得到答案.(Ⅲ)設(shè),計(jì)算,,根據(jù)垂直關(guān)系得到答案.【詳解】(Ⅰ)連結(jié),,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標(biāo)系,則,,,,設(shè)平面法向量為,則,連結(jié),可得,又所以,平面,平面的法向量,設(shè)二面角的平面角為,則.(Ⅲ)線段上存在點(diǎn)使得,設(shè),,,,所以點(diǎn)為線段的中點(diǎn).【點(diǎn)睛】本題考查了線面平行,二面角,根據(jù)垂直關(guān)系確定位置,意在考查學(xué)生的計(jì)算能力和空間想象能力.21、(1)(2)證明見解析【解析】
(1)根據(jù)公式得到,計(jì)算得到答案.(2),根據(jù)裂項(xiàng)求和法計(jì)算得到,得到證明.【詳解】(1)由已知得時(shí),,故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時(shí),,..(2)..【點(diǎn)睛】本題考查了數(shù)列通項(xiàng)公式和證明數(shù)列不等式,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.22、(1),.(2),【解析】
(1)利用枚舉法將范數(shù)為奇數(shù)的二元有序?qū)崝?shù)對(duì)都寫出來,再做和;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF(陜) 008-2019 同心度測(cè)量?jī)x校準(zhǔn)規(guī)范
- 《設(shè)計(jì)批評(píng)》課件
- 財(cái)務(wù)政策與流程再造計(jì)劃
- 風(fēng)險(xiǎn)管理策略的制定與實(shí)施計(jì)劃
- 生物下冊(cè):生物的遺傳和變異習(xí)題課件人教
- 2024-2025學(xué)年年七年級(jí)數(shù)學(xué)人教版下冊(cè)專題整合復(fù)習(xí)卷28.1 銳角三角函數(shù) 達(dá)標(biāo)訓(xùn)練(含答案)
- 生產(chǎn)計(jì)劃中的資源配置
- 寄生蟲病防治獸藥行業(yè)相關(guān)投資計(jì)劃提議范本
- 品牌重塑的時(shí)機(jī)與策略計(jì)劃
- 醫(yī)療健康大數(shù)據(jù)相關(guān)行業(yè)投資方案
- 園林植物土肥水管理-園林植物土壤管理(園林樹木栽培與養(yǎng)護(hù))
- 福建省簡(jiǎn)介PPT-福建省PPT介紹
- 化學(xué)概論知到章節(jié)答案智慧樹2023年東北師范大學(xué)
- 基因工程疫苗課件
- 華西口腔修復(fù)學(xué)教學(xué)大綱
- 插畫設(shè)計(jì)智慧樹知到答案章節(jié)測(cè)試2023年江西制造職業(yè)技術(shù)學(xué)院
- 應(yīng)用國(guó)學(xué):修身 立人 濟(jì)世 成物智慧樹知到答案章節(jié)測(cè)試2023年四川大學(xué)
- 愛德華消防主機(jī)EST操作手冊(cè)
- 物業(yè)客服年終總結(jié)動(dòng)態(tài)PPT模板
- 預(yù)防接種門診的設(shè)置
- 雷頓三坐標(biāo)操作手冊(cè)
評(píng)論
0/150
提交評(píng)論