廣東增城仙村中學(xué)2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
廣東增城仙村中學(xué)2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
廣東增城仙村中學(xué)2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
廣東增城仙村中學(xué)2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
廣東增城仙村中學(xué)2024屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東增城仙村中學(xué)2024屆高考數(shù)學(xué)全真模擬密押卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.2.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.3.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.4.下列不等式正確的是()A. B.C. D.5.甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④6.如圖,在中,點(diǎn),分別為,的中點(diǎn),若,,且滿足,則等于()A.2 B. C. D.7.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.8.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.9.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.410.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動,記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.11.已知,,,則()A. B.C. D.12.在中,,則=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)過定點(diǎn)________.14.給出下列等式:,,,…請從中歸納出第個等式:______.15.設(shè)常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.16.如圖所示梯子結(jié)構(gòu)的點(diǎn)數(shù)依次構(gòu)成數(shù)列,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點(diǎn)分別是橢圓的左,右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點(diǎn),過點(diǎn)且斜率的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn),直線交直線于點(diǎn),證明:直線.18.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.19.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.20.(12分)如圖,四棱錐中,側(cè)面為等腰直角三角形,平面.(1)求證:平面;(2)求直線與平面所成的角的正弦值.21.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.22.(10分)購買一輛某品牌新能源汽車,在行駛?cè)旰?,政府將給予適當(dāng)金額的購車補(bǔ)貼.某調(diào)研機(jī)構(gòu)對擬購買該品牌汽車的消費(fèi)者,就購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費(fèi)群體對購車補(bǔ)貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費(fèi)群體中隨機(jī)抽取人,記對購車補(bǔ)貼金額的心理預(yù)期值高于萬元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計最近個月該品牌汽車的市場銷售量,得其頻數(shù)分布表如下:月份銷售量(萬輛)試預(yù)計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時,,無意義,故排除A;又,則,故排除D;對于C,當(dāng)時,,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.2、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.3、B【解析】

設(shè),則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.4、D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、A【解析】

由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).6、D【解析】

選取為基底,其他向量都用基底表示后進(jìn)行運(yùn)算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點(diǎn)睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運(yùn)算,這樣做目標(biāo)明確,易于操作.7、B【解析】

采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點(diǎn)的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點(diǎn)對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和特殊點(diǎn)函數(shù)值符號判斷函數(shù)圖象;考查運(yùn)算求解能力和邏輯推理能力;選取合適的特殊點(diǎn)并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.8、B【解析】

分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點(diǎn)睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.9、C【解析】

由正項等比數(shù)列滿足,即,又,即,運(yùn)算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點(diǎn)睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.10、A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.11、C【解析】

利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡三角函數(shù),難度較易.12、B【解析】

在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

令,,與參數(shù)無關(guān),即可得到定點(diǎn).【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無關(guān),所有過定點(diǎn).故答案為:【點(diǎn)睛】此題考查函數(shù)的定點(diǎn)問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關(guān),熟記常見函數(shù)的定點(diǎn)可以節(jié)省解題時間.14、【解析】

通過已知的三個等式,找出規(guī)律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數(shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點(diǎn)睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題.15、【解析】

利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.16、【解析】

根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】

(1)設(shè),求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達(dá)定理得,設(shè),利用三點(diǎn)共線,求得,然后驗證即可.【詳解】解:(1)設(shè),則,所以,因為.所以當(dāng)時,值最小,所以,解得,(舍負(fù))所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因為三點(diǎn)共線,又所以,解得.而所以直線軸,即.【點(diǎn)睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達(dá)定理,得出,再代入題中需要計算可證明的式子參與化簡變形.18、(1)證明見解析;(2)最小值為1【解析】

(1)利用基本不等式可得,再根據(jù)0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點(diǎn)睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.19、(1)(2)證明見解析【解析】

(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時,,當(dāng),,當(dāng)時,,所以解法二:(1)如圖當(dāng)時,解法三:(1)當(dāng)且僅當(dāng)即時,等號成立.當(dāng)時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補(bǔ)充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點(diǎn)睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運(yùn)算求解能力.20、(1)見解析(2)【解析】

(1)根據(jù)平面,利用線面垂直的定義可得,再由,根據(jù)線面垂直的判定定理即可證出.(2)取的中點(diǎn),連接,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系求出平面的一個法向量,利用空間向量法即可求解.【詳解】因為平面平面,所以由為等腰直角三角形,所以又,故平面.取的中點(diǎn),連接,因為,所以因為平面,所以平面所以平面如圖,以為坐標(biāo)原點(diǎn),分別為正半軸建立空間直角坐標(biāo)系則,又,所以且于是設(shè)平面的法向量為,則令得平面的一個法向量設(shè)直線與平面所成的角為,則【點(diǎn)睛】本題考查了線面垂直的定義、判定定理以及空間向量法求線面角,屬于中檔題.21、(1)(2)【解析】

(1)當(dāng)時,,當(dāng)或時,,所以可轉(zhuǎn)化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當(dāng)時,因為,所以,不符合題意.當(dāng)時,解可得,因為當(dāng)時,不等式恒成立,所以,所以,解得,所以實(shí)數(shù)的取值范圍為.22、(1)1.7;(2),見解析;(2)2.【解析】

(1)平均數(shù)的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論