




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆上海市靜安區(qū)上戲附中高考數(shù)學一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,,則集合()A. B. C. D.2.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.3.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定4.向量,,且,則()A. B. C. D.5.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.36.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個8.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)9.已知函數(shù),,的零點分別為,,,則()A. B.C. D.10.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]11.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.12.如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。瑒t落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.108二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.14.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.15.甲、乙、丙、丁四名同學報名參加淮南文明城市創(chuàng)建志愿服務活動,服務活動共有“走進社區(qū)”、“環(huán)境監(jiān)測”、“愛心義演”、“交通宣傳”等四個項目,每人限報其中一項,記事件為“4名同學所報項目各不相同”,事件為“只有甲同學一人報走進社區(qū)項目”,則的值為______.16.函數(shù)的圖象在處的切線與直線互相垂直,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.18.(12分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.19.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.20.(12分)為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結果中隨機抽取10天的數(shù)據(jù),整理如下:甲公司員工:410,390,330,360,320,400,330,340,370,350乙公司員工:360,420,370,360,420,340,440,370,360,420每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個數(shù)的平均數(shù)和眾數(shù);(2)為了解乙公司員工每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求的分布列和數(shù)學期望;(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務費.21.(12分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,不等式恒成立,求整數(shù)的最小值.22.(10分)設函數(shù),(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.2、B【解析】
構造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.3、A【解析】
利用的坐標為,設直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎題4、D【解析】
根據(jù)向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導公式的應用,屬于中檔題.5、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關鍵.屬于基礎題.6、B【解析】
構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.7、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎題.8、C【解析】
根據(jù)并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.9、C【解析】
轉化函數(shù),,的零點為與,,的交點,數(shù)形結合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結合法研究函數(shù)的零點,考查了學生轉化劃歸,數(shù)形結合的能力,屬于中檔題.10、D【解析】
由題意作出可行域,轉化目標函數(shù)為連接點和可行域內(nèi)的點的直線斜率的倒數(shù),數(shù)形結合即可得解.【詳解】由題意作出可行域,如圖,目標函數(shù)可表示連接點和可行域內(nèi)的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應用,屬于基礎題.11、D【解析】
將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數(shù)的求法,屬于基礎題.12、B【解析】
根據(jù)幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
把向量進行轉化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得=1.故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積應用,綜合了基本不等式,側重考查數(shù)學運算的核心素養(yǎng).14、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.15、【解析】
根據(jù)條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據(jù)題意得所以故答案為:【點睛】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎題.16、1.【解析】
求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結果:【點睛】本題主要考查直線垂直的應用以及導數(shù)的幾何意義,根據(jù)條件建立方程關系是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)設坐標后根據(jù)向量的坐標運算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標表示出,得到,所以,代入韋達定理即可求解.【詳解】(1)設,,則,設,由得.又由于,化簡得的軌跡的方程為.(2)設直線的方程為,與的方程聯(lián)立,消去得,,設,,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.【點睛】此題考查軌跡問題,橢圓和直線相交,注意坐標表示向量進行轉化的處理技巧,屬于較難題目.18、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調(diào)遞增,當,,單調(diào)遞減,作出函數(shù)圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數(shù)滿足,則;若假真,則實數(shù)滿足,無解;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查根據(jù)全(特)稱命題的真假求參數(shù)的問題.其思路:與全稱命題或特稱命題真假有關的參數(shù)取值范圍問題的本質是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數(shù)的方程或不等式(組),再通過解方程或不等式(組)求出參數(shù)的值或范圍.19、(1);(2)或【解析】
(1)根據(jù)的周長為,結合離心率,求出,即可求出方程;(2)設,則,求出直線方程,若斜率不存在,求出坐標,直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點坐標,根據(jù)和三點共線,將點坐標用表示,坐標代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設,則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯(lián)立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯(lián)立①,③可解得所以.因為,設所以,即.又因為位于軸異側,所以.因為三點共線,即應與共線,所以,即,所以,又,所以,解得,所以,所以點的坐標為或.【點睛】本題考查橢圓的標準方程以及應用、直線與橢圓的位置關系,考查分類討論思想和計算求解能力,屬于較難題.20、(1)平均數(shù)為360,眾數(shù)為330;(2)見詳解;(3)甲公司:7020(元),乙公司:7281(元)【解析】
(1)將圖中甲公司員工A的所有數(shù)據(jù)相加,再除以總的天數(shù)10,即可求出甲公司員工A投遞快遞件數(shù)的平均數(shù).從中發(fā)現(xiàn)330出現(xiàn)的次數(shù)最多,故為眾數(shù);(2)由題意能求出的可能取值為340,360,370,420,440,分別求出相對應的概率,由此能求出的分布列和數(shù)學期望;(3)利用(1)(2)的結果,可估算兩公司的每位員工在該月所得的勞務費.【詳解】解:(1)由題意知甲公司員工在這10天投遞的快遞件數(shù)的平均數(shù)為.眾數(shù)為330.(2)設乙公司員工1天的投遞件數(shù)為隨機變量,則當時,當時,當時,當時,當時,的分布列為204219228273291(元);(3)由(1)估計甲公司被抽取員工在該月所得的勞務費為(元)由(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國脲醛樹脂市場十三五規(guī)劃及投資風險評估報告
- 2025-2030年中國翡翠玉鐲行業(yè)市場需求規(guī)模及前景趨勢預測報告
- 2025-2030年中國空氣凈化系統(tǒng)工程行業(yè)發(fā)展狀況及營銷戰(zhàn)略研究報告
- 2025-2030年中國碳酸氫鈉干滅火劑市場運營現(xiàn)狀及發(fā)展趨勢分析報告
- 2025-2030年中國硅鋼板行業(yè)運行動態(tài)與營銷策略研究報告
- 廣東文藝職業(yè)學院《數(shù)據(jù)描述與可視化》2023-2024學年第二學期期末試卷
- 沈陽職業(yè)技術學院《課件設計與微課制作》2023-2024學年第二學期期末試卷
- 四川文化傳媒職業(yè)學院《汽車數(shù)據(jù)分析》2023-2024學年第二學期期末試卷
- 山西傳媒學院《模式識別》2023-2024學年第二學期期末試卷
- 浙江樹人學院《高等有機化學》2023-2024學年第二學期期末試卷
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗收規(guī)范
- 政府機關保安服務項目整體服務方案
- DBJ∕T13-354-2021 既有房屋結構安全隱患排查技術標準
- 溫室大棚、花卉苗圃采暖方案(空氣源熱泵)
- 道路、橋梁、隧道、地鐵施工標準化手冊(專業(yè)篇)
- 部編人教版五年級下冊道德與法治全冊知識點整理歸納
- 初中人音版音樂七年級下冊.第二單元長江之歌.(14張)ppt課件
- 繪本閱讀《鐵絲網(wǎng)上的小花》
- 離心式排風機安裝施工方案及技術措施
- 字號大小樣式設計參照表
- 理想信念主題班會ppt課件
評論
0/150
提交評論