2023-2024學年江西省南昌市名校高考數(shù)學押題試卷含解析_第1頁
2023-2024學年江西省南昌市名校高考數(shù)學押題試卷含解析_第2頁
2023-2024學年江西省南昌市名校高考數(shù)學押題試卷含解析_第3頁
2023-2024學年江西省南昌市名校高考數(shù)學押題試卷含解析_第4頁
2023-2024學年江西省南昌市名校高考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江西省南昌市名校高考數(shù)學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則下列結論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關于點對稱C.函數(shù)在上單調遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到2.設遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.3.集合,,則()A. B. C. D.4.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.805.若復數(shù)滿足(為虛數(shù)單位),則其共軛復數(shù)的虛部為()A. B. C. D.6.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.7.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.8.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關于點成中心對稱C.函數(shù)在單調遞增D.函數(shù)的圖象向右平移后關于原點成中心對稱9.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.10.若,,則的值為()A. B. C. D.11.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.12.已知是第二象限的角,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對角線的交點,現(xiàn)從這5個點中任選3個點,則這3個點不共線的概率為________.14.已知,則_____15.滿足線性的約束條件的目標函數(shù)的最大值為________16.已知為雙曲線:的左焦點,直線經(jīng)過點,若點,關于直線對稱,則雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.18.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.19.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.20.(12分)記為數(shù)列的前項和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項和.21.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設,且數(shù)列為等比數(shù)列,令,.求證:.22.(10分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.2、A【解析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.3、A【解析】

計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.4、D【解析】

根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結果.【詳解】由題可知:當時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.5、D【解析】

由已知等式求出z,再由共軛復數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數(shù)=-1+,虛部為1故選D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算和共軛復數(shù)的基本概念,屬于基礎題.6、B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.7、C【解析】

由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.8、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質,即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質,其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質求解是解答的關鍵,著重考查了數(shù)形結合思想,以及運算與求解能力,屬于基礎題.9、B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨??;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質,屬綜合基礎題.10、A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.11、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.12、D【解析】

利用誘導公式和同角三角函數(shù)的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數(shù)的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數(shù),這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現(xiàn)從,,,,這5個點中任選3個點,基本事件總數(shù),這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】

化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數(shù)的性質的應用,屬于基礎題.15、1【解析】

作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標函數(shù)的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當直線經(jīng)過點時,截距最小,此時取得最大值。由,解得,代入直線,得?!军c睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。16、【解析】

由點,關于直線對稱,得到直線的斜率,再根據(jù)直線過點,可求出直線方程,又,中點在直線上,代入直線的方程,化簡整理,即可求出結果.【詳解】因為為雙曲線:的左焦點,所以,又點,關于直線對稱,,所以可得直線的方程為,又,中點在直線上,所以,整理得,又,所以,故,解得,因為,所以.故答案為【點睛】本題主要考查雙曲線的簡單性質,先由兩點對稱,求出直線斜率,再由焦點坐標求出直線方程,根據(jù)中點在直線上,即可求出結果,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)最大值為.【解析】

(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調性求出該函數(shù)的最小值,進而可證得結論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當時,函數(shù)單調遞減,則;當時,函數(shù)單調遞增,則;當時,函數(shù)單調遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當且僅當時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.18、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】

(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.19、(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結合基本不等式,求出的最大值,即可求出結論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當且僅當時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應用基本不等式求最值,屬于基礎題.20、(1);(2)證明見詳解,【解析】

(1)根據(jù),可得,然后作差,可得結果.(2)根據(jù)(1)的結論,用取代,得到新的式子,然后作差,可得結果,最后根據(jù)等比數(shù)列的前項和公式,可得結果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項為,公比為的等比數(shù)列所以【點睛】本題主要考查遞推公式以及之間的關系的應用,考驗觀察能力以及分析能力,屬中檔題.21、(1)(2)詳見解析【解析】

(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數(shù),且),當時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關系式,我們常利用這個關系式實現(xiàn)與之間的相互轉化.數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論