版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濟(jì)南市錦澤技工學(xué)校2024屆高三第五次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,則的最小值為()A. B. C. D.2.已知集合,,則=()A. B. C. D.3.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則()A. B.2 C.3 D.4.已知,橢圓的方程,雙曲線(xiàn)的方程為,和的離心率之積為,則的漸近線(xiàn)方程為()A. B. C. D.5.拋物線(xiàn)y2=ax(a>0)的準(zhǔn)線(xiàn)與雙曲線(xiàn)C:x28A.8 B.6 C.4 D.26.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.7.向量,,且,則()A. B. C. D.8.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.9.已知向量,則向量在向量方向上的投影為()A. B. C. D.10.已知函數(shù),存在實(shí)數(shù),使得,則的最大值為()A. B. C. D.11.已知全集,函數(shù)的定義域?yàn)椋?,則下列結(jié)論正確的是A. B.C. D.12.已知,是兩條不重合的直線(xiàn),,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為_(kāi)_____.14.曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為_(kāi)_______.15.已知復(fù)數(shù),其中為虛數(shù)單位,則的模為_(kāi)______________.16.已知平面向量,,且,則向量與的夾角的大小為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,均為正項(xiàng)數(shù)列,其前項(xiàng)和分別為,,且,,,當(dāng),時(shí),,.(1)求數(shù)列,的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)若是的極值點(diǎn),求的極大值;(2)求實(shí)數(shù)的范圍,使得恒成立.20.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說(shuō)明理由.21.(12分)設(shè)等差數(shù)列滿(mǎn)足,.(1)求數(shù)列的通項(xiàng)公式;(2)求的前項(xiàng)和及使得最小的的值.22.(10分)如圖,四棱錐中,底面,,點(diǎn)在線(xiàn)段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】,選B2、C【解析】
計(jì)算,,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計(jì)算能力.3、A【解析】
由奇函數(shù)定義求出和.【詳解】因?yàn)槭嵌x在上的奇函數(shù),.又當(dāng)時(shí),,.故選:A.【點(diǎn)睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.4、A【解析】
根據(jù)橢圓與雙曲線(xiàn)離心率的表示形式,結(jié)合和的離心率之積為,即可得的關(guān)系,進(jìn)而得雙曲線(xiàn)的離心率方程.【詳解】橢圓的方程,雙曲線(xiàn)的方程為,則橢圓離心率,雙曲線(xiàn)的離心率,由和的離心率之積為,即,解得,所以漸近線(xiàn)方程為,化簡(jiǎn)可得,故選:A.【點(diǎn)睛】本題考查了橢圓與雙曲線(xiàn)簡(jiǎn)單幾何性質(zhì)應(yīng)用,橢圓與雙曲線(xiàn)離心率表示形式,雙曲線(xiàn)漸近線(xiàn)方程求法,屬于基礎(chǔ)題.5、A【解析】
求得拋物線(xiàn)的準(zhǔn)線(xiàn)方程和雙曲線(xiàn)的漸近線(xiàn)方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線(xiàn)y2=ax(a>0)的準(zhǔn)線(xiàn)為x=-a4,雙曲線(xiàn)C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線(xiàn)的準(zhǔn)線(xiàn)方程和雙曲線(xiàn)的漸近線(xiàn)方程,考查運(yùn)算能力,屬于基礎(chǔ)題.6、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.7、D【解析】
根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點(diǎn)睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.8、B【解析】
利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.9、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.10、A【解析】
畫(huà)出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.11、A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線(xiàn)上的點(diǎn)集,都由代表元決定.12、D【解析】
根據(jù)線(xiàn)面平行和面面平行的性質(zhì),可判定A;由線(xiàn)面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線(xiàn)面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線(xiàn)面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.14、【解析】
求導(dǎo),得到和,利用點(diǎn)斜式即可求得結(jié)果.【詳解】由于,,所以,由點(diǎn)斜式可得切線(xiàn)方程為.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線(xiàn)方程,屬基礎(chǔ)題.15、【解析】
利用復(fù)數(shù)模的計(jì)算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點(diǎn)睛】本題考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.16、【解析】
由,解得,進(jìn)而求出,即可得出結(jié)果.【詳解】解:因?yàn)椋?,解得,所以,所以向量與的夾角的大小為.都答案為:.【點(diǎn)睛】本題主要考查平面向量的運(yùn)算,平面向量垂直,向量夾角等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2)【解析】
(1),所,兩式相減,即可得到數(shù)列遞推關(guān)系求解通項(xiàng)公式,由,整理得,得到,即可求解通項(xiàng)公式;(2)由(1)可知,,即可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所,兩式相減,整理得,當(dāng)時(shí),,解得,所以數(shù)列是首項(xiàng)和公比均為的等比數(shù)列,即,因?yàn)?,整理得,又因?yàn)?,所以,所以,即,因?yàn)椋詳?shù)列是以首項(xiàng)和公差均為1的等差數(shù)列,所以;(2)由(1)可知,,,即.【點(diǎn)睛】此題考查求數(shù)列的通項(xiàng)公式,以及數(shù)列求和,關(guān)鍵在于對(duì)題中所給關(guān)系合理變形,發(fā)現(xiàn)其中的關(guān)系,裂項(xiàng)求和作為一類(lèi)常用的求和方法,需要在平常的學(xué)習(xí)中多做積累常見(jiàn)的裂項(xiàng)方式.18、(1);(2).【解析】
(1)分類(lèi)討論去絕對(duì)值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對(duì)值,轉(zhuǎn)化為在時(shí)恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時(shí),,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因?yàn)?,,所以,又,,,?不等式恒成立,即在時(shí)恒成立,不等式恒成立必須,,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點(diǎn)睛】本題考查分類(lèi)討論解絕對(duì)值不等式,含有絕對(duì)值的不等式的恒成立問(wèn)題.屬于中檔題.19、(1).(2)【解析】
(1)先對(duì)函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時(shí),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時(shí),函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時(shí)恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當(dāng)t≥0時(shí),g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當(dāng)﹣2<t<0時(shí),g(x)在()上單調(diào)遞減,在(0,),(1,+∞)上單調(diào)遞增,此時(shí)g(1)=t﹣1<﹣1不合題意,舍去;(iii)當(dāng)t=﹣2時(shí),g′(x)0,即g(x)在(0,+∞)上單調(diào)遞增,此時(shí)g(1)=﹣3不合題意;(iv)當(dāng)t<﹣2時(shí),g(x)在(1,)上單調(diào)遞減,在(0,1),()上單調(diào)遞增,此時(shí)g(1)=t﹣1<﹣3不合題意,綜上,t≥1時(shí),f(x)≥2恒成立.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性及極值,利用導(dǎo)數(shù)與函數(shù)的性質(zhì)處理不等式的恒成立問(wèn)題,分類(lèi)討論思想,屬于中檔題.20、(1)(2)不存在;詳見(jiàn)解析【解析】
(1)將函數(shù)去絕對(duì)值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號(hào),,不成立;或,異號(hào),,不成立;故不存在實(shí)數(shù),,使得,.【點(diǎn)睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.21、(1)(2);時(shí),取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項(xiàng)公式為(2)由(1)知時(shí),取得最小值.【點(diǎn)睛】本題解題關(guān)鍵是掌握等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.22、(1)證明見(jiàn)解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點(diǎn),為軸,為軸,為軸,建立
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《板帶材生產(chǎn)概述》課件
- 《電子交易》課件
- DBJT 13-302-2018 現(xiàn)澆混凝土空心樓蓋應(yīng)用技術(shù)規(guī)程
- 第18課 從九一八事變到西安事變(解析版)
- 名著之魅 解析與啟示
- 體育場(chǎng)館衛(wèi)生消毒流程
- 腫瘤科護(hù)士年終總結(jié)
- 2023-2024年項(xiàng)目部安全管理人員安全培訓(xùn)考試題答案典型題匯編
- 2023年-2024年生產(chǎn)經(jīng)營(yíng)單位安全教育培訓(xùn)試題答案往年題考
- 外貿(mào)公司實(shí)習(xí)報(bào)告合集九篇
- 2024初中數(shù)學(xué)競(jìng)賽真題訓(xùn)練(學(xué)生版+解析版)(共6個(gè))
- 江蘇省南通市崇川區(qū)2023-2024學(xué)年八上期末數(shù)學(xué)試題(原卷版)
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試歷史試題(解析版)
- 遼寧省沈陽(yáng)市沈河區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含答案)
- 江西省贛州市南康區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(含答案)
- 《制造業(yè)成本核算》課件
- 【MOOC】數(shù)學(xué)建模與創(chuàng)新實(shí)踐-西安科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 天冬化學(xué)成分
- 2024項(xiàng)目經(jīng)理講安全課
- 中國(guó)共產(chǎn)主義青年團(tuán)團(tuán)章
- 采購(gòu)原材料年終總結(jié)
評(píng)論
0/150
提交評(píng)論