版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
行列式的性質(zhì)第一章行列式和線性方程組的求解§1.2n階行列式的概念
設(shè)D=稱DT為D的轉(zhuǎn)置行列式.a11a12…a1n
a21a22…a2n…………an1
an2…anna11
a21…an1
a12
a22
…an2…………a1n
a2n
…ann,DT==D.
定義令DT
=|bij|
n×n,則bij=aji,則DT一.行列式的基本性質(zhì)性質(zhì)1.(轉(zhuǎn)置)行列互換值不變,即DT=D.證第2頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.2n階行列式的概念
設(shè)D=稱DT為D的轉(zhuǎn)置行列式.a11a12…a1n
a21a22…a2n…………an1
an2…anna11
a21…an1
a12
a22
…an2…………a1n
a2n
…ann,DT=
定義一.行列式的基本性質(zhì)性質(zhì)1.(轉(zhuǎn)置)行列互換值不變,即DT=D.注:性質(zhì)1表明關(guān)于行的性質(zhì)對(duì)列也成立.第3頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
性質(zhì)2.(換法)兩行(列)互換,行列式的值變號(hào).第4頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
推論.兩行(列)相同,行列式值為零,即第5頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
性質(zhì)3.(倍法)把行列式的某一行(列)的所有元素同乘以數(shù)k,等于用數(shù)k乘以這個(gè)行列式,即
推論.如果行列式有兩行(列)成比例,則該
行列式為零.第6頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
性質(zhì)4.(分拆)如果行列式某行(列)的所有元素都是兩數(shù)之和,則該行列式為兩個(gè)行列式之和,即
第7頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
性質(zhì)5.(消法)將行列式的某一行(列)的各元素乘以常數(shù)加到另一行(列)的對(duì)應(yīng)元素上去,則行列式的值不變,即
第8頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
行列式性質(zhì)小結(jié)性質(zhì)2(換法)換行(列)變號(hào).推論兩行(列)同,值為零.性質(zhì)3(倍法)某行(列)乘數(shù)k,值變?yōu)閗D.推論兩行(列)成比例,值為零.性質(zhì)4(分拆)D可按某行(列)分拆成兩行列式之和.性質(zhì)5(消法)D的某行(列)乘數(shù)
k
加至另行
(列),行列式值不變.性質(zhì)1(轉(zhuǎn)置)
DT=D.第9頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
例1.計(jì)算解
通過行變換將D化為上三角行列式第10頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
小結(jié)任一行列式總可以通過行(或列)的“換法”、“倍法”、“消法”化成上(或下)三角形行列式.“三角形法”第11頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
例2.設(shè)D=a11…a1m
am1…amm
D1
=……,證明:D=D1D2.b11…
b1nbn1…
bnnD2
=,……a11…
a1m
c11…
c1n
……………………,am1
…ammcm1…
cmn0…0b11…
b1n0…0bn1…
bnn第12頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
a11…a1n
an1…ann
D1
=……,b11…
b1nbn1…
bnnD2
=,……問題c11…
c1ncn1…
cnnD3=,……d11…
d1ndn1…
dnnD4=,……a11…
a1n
c11…
c1n
……………………=an1
…anncn1…
cnn
d11…
d1nb11…
b1n
d11…
dnnbn1…
bnnD1D2
D3D4?×第13頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
討論將n階行列式轉(zhuǎn)化為n-1階行列式計(jì)算的問題,即“降階”.二.行列式按行(列)展開定理定義:在n階行列式D=|aij|n×n
中,把元素aij所在的第i行和第j列的元素劃去,剩余元素構(gòu)成的n1階行列式稱為元素aij的余子式,記作Mij
.令A(yù)ij=(1)i+jMij,稱Aij為元素aij的代數(shù)余子式.第14頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
第15頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
例3.在行列式中第16頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
定理1.2.n階行列式D=|aij|n×n等于它的任意一行(列)的所有元素與其對(duì)應(yīng)的代數(shù)余子式乘積之和,即注2.可作為行列式的等價(jià)定義注1.將行列式“降階”Laplace行列式按行(列)展開定理第17頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
證第18頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
推論.n階行列式D=|aij|n×n中,有第19頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
證由降階法,將G
按第j
行展開有第
i行第j行設(shè)第20頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
(未寫出的元素都是0).例4.計(jì)算2n階行列式D2n=a
ba
bc
dc
d…………第21頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
解:D2n==a............aabb0cc0dd00d
...…............0aabbc0cc0dd0...…+(1)2n+1b............a00aabcdd00d
...…0bb00cc0….........……第22頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
=a............aabb0cc0dd00d
...…............0aabbc0cc0dd0...…+(1)2n+1b=adD2(n1)
bcD2(n1)=(ad
bc)D2(n1)=(ad
bc)2D2(n2)=(ad
bc)3D2(n3)=…=(ad
bc)n1
D2=(ad
bc)n.小結(jié)當(dāng)行列式的某一行(或列)含有較多的零,可考慮使用行列式的按行(列)展開定理,
達(dá)到“降階”的目的.第23頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
1.定義法—利用n階行列式的定義計(jì)算;2.三角形法—利用性質(zhì)化為三角形行列式來
計(jì)算;3.降階法—利用行列式的按行(列)展開定理
對(duì)行列式進(jìn)行降階計(jì)算;4.遞推公式法;5.析因法;6.歸納法;7.加邊法(升階法);n階行列式的計(jì)算方法總結(jié)第24頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
例5.計(jì)算
n
階行列式(行和為常數(shù))第25頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
解第26頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
第27頁,共31頁,2024年2月25日,星期天第一章行列式和線性方程組的求解§1.3行列式的性質(zhì)
例6.計(jì)算n階行列式Dn=
a111…
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度酒店消防系統(tǒng)設(shè)備更新與優(yōu)化合同3篇
- 2025年度私人承包數(shù)據(jù)中心節(jié)能減排建筑合同范本3篇
- 2025年教育培訓(xùn)機(jī)構(gòu)銷售居間代理協(xié)議3篇
- 2025年度個(gè)人股份質(zhì)押合同標(biāo)準(zhǔn)范本4篇
- 2025年度個(gè)人二手車轉(zhuǎn)讓協(xié)議書(全新升級(jí)版)3篇
- 美容院消防安全責(zé)任及管理協(xié)議書(二零二五年度)4篇
- 濕地湖施工方案
- 畢業(yè)答辯指導(dǎo)模板
- 2025年度個(gè)人裝修借款合同答辯狀編制指南4篇
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫含答案(能力提升)
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級(jí)上冊(cè) 期末綜合試卷(含答案)
- 收養(yǎng)能力評(píng)分表
- 山東省桓臺(tái)第一中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國(guó)保守國(guó)家秘密法實(shí)施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國(guó)統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí) CCAA年度確認(rèn) 試題與答案
- 皮膚儲(chǔ)存新技術(shù)及臨床應(yīng)用
- 外研版七年級(jí)英語上冊(cè)《閱讀理解》專項(xiàng)練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
評(píng)論
0/150
提交評(píng)論