河南省九師.商周聯(lián)盟2024屆高考沖刺押題(最后一卷)數(shù)學試卷含解析_第1頁
河南省九師.商周聯(lián)盟2024屆高考沖刺押題(最后一卷)數(shù)學試卷含解析_第2頁
河南省九師.商周聯(lián)盟2024屆高考沖刺押題(最后一卷)數(shù)學試卷含解析_第3頁
河南省九師.商周聯(lián)盟2024屆高考沖刺押題(最后一卷)數(shù)學試卷含解析_第4頁
河南省九師.商周聯(lián)盟2024屆高考沖刺押題(最后一卷)數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省九師.商周聯(lián)盟2024屆高考沖刺押題(最后一卷)數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.2.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或3.已知角的終邊經過點P(),則sin()=A. B. C. D.4.如果,那么下列不等式成立的是()A. B.C. D.5.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.256.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件7.已知是第二象限的角,,則()A. B. C. D.8.已知集合,則()A. B.C. D.9.甲、乙兩名學生的六次數(shù)學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數(shù)大于乙同學成績的中位數(shù);②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④10.在復平面內,復數(shù)z=i對應的點為Z,將向量繞原點O按逆時針方向旋轉,所得向量對應的復數(shù)是()A. B. C. D.11.函數(shù)(且)的圖象可能為()A. B. C. D.12.將函數(shù)圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側,現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.14.在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.15.若向量與向量垂直,則______.16.五聲音階是中國古樂基本音階,故有成語“五音不全”.中國古樂中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個音階全用上,排成一個五個音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側,可排成______種不同的音序.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據,得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.18.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:19.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.20.(12分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.21.(12分)表示,中的最大值,如,己知函數(shù),.(1)設,求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.22.(10分)已知.(1)求的單調區(qū)間;(2)當時,求證:對于,恒成立;(3)若存在,使得當時,恒有成立,試求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設是的中心,則平面,,,外接球球心必在高上,設外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關鍵是由已知條件確定折疊成的三棱錐是正四面體.2、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.3、A【解析】

由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.4、D【解析】

利用函數(shù)的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數(shù)的單調性比較大小,考查不等式的性質,屬于基礎題.5、D【解析】

由公差d=-2可知數(shù)列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.6、A【解析】

根據充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題7、D【解析】

利用誘導公式和同角三角函數(shù)的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數(shù)的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.8、C【解析】

由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.9、A【解析】

由莖葉圖中數(shù)據可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據數(shù)據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數(shù)為,乙同學成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據特征,考查由莖葉圖求中位數(shù)、平均數(shù).10、A【解析】

由復數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉,得到向量的坐標,則對應的復數(shù)可求.【詳解】解:∵復數(shù)z=i(i為虛數(shù)單位)在復平面中對應點Z(0,1),

∴=(0,1),將繞原點O逆時針旋轉得到,

設=(a,b),,則,即,

又,解得:,∴,對應復數(shù)為.故選:A.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題.11、D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質;2.函數(shù)的圖象.12、D【解析】

先化簡函數(shù)解析式,再根據函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,

將函數(shù)圖象上各點的橫坐標伸長到原來的3倍,所得函數(shù)的解析式為,

再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質是高考考查的熱點之一,經??疾槎x域、值域、周期性、對稱性、奇偶性、單調性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復習時要注意基礎知識的理解與落實.三角函數(shù)的性質由函數(shù)的解析式確定,在解答三角函數(shù)性質的綜合試題時要抓住函數(shù)解析式這個關鍵,在函數(shù)解析式較為復雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分兩種情況討論:(1)斜邊在BC上,設,則,(2)若在若一條直角邊在上,設,則,進一步利用導數(shù)的應用和三角函數(shù)關系式恒等變形和函數(shù)單調性即可求出最大值.【詳解】(1)斜邊在上,設,則,則,,從而.當時,此時,符合.(2)若一條直角邊在上,設,則,則,,由知.,當時,,單調遞增,當時,,單調遞減,.當,即時,最大.故答案為:.【點睛】此題考查實際問題中導數(shù),三角函數(shù)和函數(shù)單調性的綜合應用,注意分類討論把所有情況考慮完全,屬于一般性題目.14、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個參數(shù)方程轉化為普通方程;(2)利用參數(shù)方程,結合點到直線的距離公式,將問題轉化為求解二次函數(shù)最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【點睛】本題考查將參數(shù)方程轉化為普通方程,以及利用參數(shù)方程求距離的最值問題,屬中檔題.15、0【解析】

直接根據向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據向量垂直求參數(shù),意在考查學生的計算能力.16、1【解析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個或第四個位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側,此時有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側;③若“角”在第二個或第四個位置上,則有種;綜上,共有種.故答案為:1.【點睛】本題主要考查利用排列知識解決實際問題,涉及分步計數(shù)乘法原理和分類計數(shù)加法原理的應用,意在考查學生分類討論思想的應用和綜合運用知識的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫數(shù)據,求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據,得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據,得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,考查函數(shù)、古典概型等基礎知識,考查推理論證能力、運算求解能力、空間想象能力,考查數(shù)形結合思想、化歸與轉化思想,是中檔題.18、(1)(2)見解析【解析】

(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質得當且僅當即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當且僅當時等號成立,即,所以.法2:由得,,當且僅當時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.19、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據對任意恒成立,等價于對任意恒成立,構造,求出的單調性,由,,,,可得存在唯一的零點,使得,利用單調性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調遞減,在上單調遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數(shù)研究不等式恒成立或存在型問題,首先要構造函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造函數(shù),直接把問題轉化為函數(shù)的最值問題.20、(1)(2)【解析】

(1)由直線可得橢圓右焦點的坐標為,由中點可得,且由斜率公式可得,由點在橢圓上,則,二者作差,進而代入整理可得,即可求解;(2)設直線,點到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點到直線距離求得,根據直線l與線段AB(不含端點)相交,可得,即,進而整理換元,由二次函數(shù)性質求解最值即可.【詳解】(1)直線與x軸交于點,所以橢圓右焦點的坐標為,故,因為線段AB的中點是,設,則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設直線,代入,得,解得或,設,則,則,因為到直線的距離分別是,由于直線l與線段AB(不含端點)相交,所以,即,所以,四邊形的面積,令,,則,所以,當,即時,,因此四邊形面積的最大值為.【點睛】本題考查求橢圓的標準方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關系的應用,考查運算能力.21、(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點,即在上零點的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實數(shù),使得對恒成立,且的取值范圍為........

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論